import numpy as np import pytest from pandas import ( DataFrame, Series, ) import pandas._testing as tm class TestDataFrameClip: def test_clip(self, float_frame): median = float_frame.median().median() original = float_frame.copy() double = float_frame.clip(upper=median, lower=median) assert not (double.values != median).any() # Verify that float_frame was not changed inplace assert (float_frame.values == original.values).all() def test_inplace_clip(self, float_frame): # GH#15388 median = float_frame.median().median() frame_copy = float_frame.copy() return_value = frame_copy.clip(upper=median, lower=median, inplace=True) assert return_value is None assert not (frame_copy.values != median).any() def test_dataframe_clip(self): # GH#2747 df = DataFrame(np.random.randn(1000, 2)) for lb, ub in [(-1, 1), (1, -1)]: clipped_df = df.clip(lb, ub) lb, ub = min(lb, ub), max(ub, lb) lb_mask = df.values <= lb ub_mask = df.values >= ub mask = ~lb_mask & ~ub_mask assert (clipped_df.values[lb_mask] == lb).all() assert (clipped_df.values[ub_mask] == ub).all() assert (clipped_df.values[mask] == df.values[mask]).all() def test_clip_mixed_numeric(self): # clip on mixed integer or floats # GH#24162, clipping now preserves numeric types per column df = DataFrame({"A": [1, 2, 3], "B": [1.0, np.nan, 3.0]}) result = df.clip(1, 2) expected = DataFrame({"A": [1, 2, 2], "B": [1.0, np.nan, 2.0]}) tm.assert_frame_equal(result, expected) df = DataFrame([[1, 2, 3.4], [3, 4, 5.6]], columns=["foo", "bar", "baz"]) expected = df.dtypes result = df.clip(upper=3).dtypes tm.assert_series_equal(result, expected) @pytest.mark.parametrize("inplace", [True, False]) def test_clip_against_series(self, inplace): # GH#6966 df = DataFrame(np.random.randn(1000, 2)) lb = Series(np.random.randn(1000)) ub = lb + 1 original = df.copy() clipped_df = df.clip(lb, ub, axis=0, inplace=inplace) if inplace: clipped_df = df for i in range(2): lb_mask = original.iloc[:, i] <= lb ub_mask = original.iloc[:, i] >= ub mask = ~lb_mask & ~ub_mask result = clipped_df.loc[lb_mask, i] tm.assert_series_equal(result, lb[lb_mask], check_names=False) assert result.name == i result = clipped_df.loc[ub_mask, i] tm.assert_series_equal(result, ub[ub_mask], check_names=False) assert result.name == i tm.assert_series_equal(clipped_df.loc[mask, i], df.loc[mask, i]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("lower", [[2, 3, 4], np.asarray([2, 3, 4])]) @pytest.mark.parametrize( "axis,res", [ (0, [[2.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 7.0, 7.0]]), (1, [[2.0, 3.0, 4.0], [4.0, 5.0, 6.0], [5.0, 6.0, 7.0]]), ], ) def test_clip_against_list_like(self, simple_frame, inplace, lower, axis, res): # GH#15390 original = simple_frame.copy(deep=True) result = original.clip(lower=lower, upper=[5, 6, 7], axis=axis, inplace=inplace) expected = DataFrame(res, columns=original.columns, index=original.index) if inplace: result = original tm.assert_frame_equal(result, expected, check_exact=True) @pytest.mark.parametrize("axis", [0, 1, None]) def test_clip_against_frame(self, axis): df = DataFrame(np.random.randn(1000, 2)) lb = DataFrame(np.random.randn(1000, 2)) ub = lb + 1 clipped_df = df.clip(lb, ub, axis=axis) lb_mask = df <= lb ub_mask = df >= ub mask = ~lb_mask & ~ub_mask tm.assert_frame_equal(clipped_df[lb_mask], lb[lb_mask]) tm.assert_frame_equal(clipped_df[ub_mask], ub[ub_mask]) tm.assert_frame_equal(clipped_df[mask], df[mask]) def test_clip_against_unordered_columns(self): # GH#20911 df1 = DataFrame(np.random.randn(1000, 4), columns=["A", "B", "C", "D"]) df2 = DataFrame(np.random.randn(1000, 4), columns=["D", "A", "B", "C"]) df3 = DataFrame(df2.values - 1, columns=["B", "D", "C", "A"]) result_upper = df1.clip(lower=0, upper=df2) expected_upper = df1.clip(lower=0, upper=df2[df1.columns]) result_lower = df1.clip(lower=df3, upper=3) expected_lower = df1.clip(lower=df3[df1.columns], upper=3) result_lower_upper = df1.clip(lower=df3, upper=df2) expected_lower_upper = df1.clip(lower=df3[df1.columns], upper=df2[df1.columns]) tm.assert_frame_equal(result_upper, expected_upper) tm.assert_frame_equal(result_lower, expected_lower) tm.assert_frame_equal(result_lower_upper, expected_lower_upper) def test_clip_with_na_args(self, float_frame, using_array_manager): """Should process np.nan argument as None""" # GH#17276 tm.assert_frame_equal(float_frame.clip(np.nan), float_frame) tm.assert_frame_equal(float_frame.clip(upper=np.nan, lower=np.nan), float_frame) # GH#19992 and adjusted in GH#40420 df = DataFrame({"col_0": [1, 2, 3], "col_1": [4, 5, 6], "col_2": [7, 8, 9]}) result = df.clip(lower=[4, 5, np.nan], axis=0) expected = DataFrame( {"col_0": [4, 5, 3], "col_1": [4, 5, 6], "col_2": [7, 8, 9]} ) tm.assert_frame_equal(result, expected) warn = FutureWarning if using_array_manager else None with tm.assert_produces_warning(warn, match="Downcasting integer-dtype"): result = df.clip(lower=[4, 5, np.nan], axis=1) expected = DataFrame( {"col_0": [4, 4, 4], "col_1": [5, 5, 6], "col_2": [7, 8, 9]} ) tm.assert_frame_equal(result, expected) # GH#40420 data = {"col_0": [9, -3, 0, -1, 5], "col_1": [-2, -7, 6, 8, -5]} df = DataFrame(data) t = Series([2, -4, np.NaN, 6, 3]) result = df.clip(lower=t, axis=0) expected = DataFrame({"col_0": [9, -3, 0, 6, 5], "col_1": [2, -4, 6, 8, 3]}) tm.assert_frame_equal(result, expected) def test_clip_pos_args_deprecation(self): # https://github.com/pandas-dev/pandas/issues/41485 df = DataFrame({"a": [1, 2, 3]}) msg = ( r"In a future version of pandas all arguments of DataFrame.clip except " r"for the arguments 'lower' and 'upper' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = df.clip(0, 1, 0) expected = DataFrame({"a": [1, 1, 1]}) tm.assert_frame_equal(result, expected)