import numpy as np import pytest from pandas import ( DataFrame, Series, ) import pandas._testing as tm class TestDataFramePctChange: @pytest.mark.parametrize( "periods,fill_method,limit,exp", [ (1, "ffill", None, [np.nan, np.nan, np.nan, 1, 1, 1.5, 0, 0]), (1, "ffill", 1, [np.nan, np.nan, np.nan, 1, 1, 1.5, 0, np.nan]), (1, "bfill", None, [np.nan, 0, 0, 1, 1, 1.5, np.nan, np.nan]), (1, "bfill", 1, [np.nan, np.nan, 0, 1, 1, 1.5, np.nan, np.nan]), (-1, "ffill", None, [np.nan, np.nan, -0.5, -0.5, -0.6, 0, 0, np.nan]), (-1, "ffill", 1, [np.nan, np.nan, -0.5, -0.5, -0.6, 0, np.nan, np.nan]), (-1, "bfill", None, [0, 0, -0.5, -0.5, -0.6, np.nan, np.nan, np.nan]), (-1, "bfill", 1, [np.nan, 0, -0.5, -0.5, -0.6, np.nan, np.nan, np.nan]), ], ) @pytest.mark.parametrize("klass", [DataFrame, Series]) def test_pct_change_with_nas(self, periods, fill_method, limit, exp, klass): vals = [np.nan, np.nan, 1, 2, 4, 10, np.nan, np.nan] obj = klass(vals) res = obj.pct_change(periods=periods, fill_method=fill_method, limit=limit) tm.assert_equal(res, klass(exp)) def test_pct_change_numeric(self): # GH#11150 pnl = DataFrame( [np.arange(0, 40, 10), np.arange(0, 40, 10), np.arange(0, 40, 10)] ).astype(np.float64) pnl.iat[1, 0] = np.nan pnl.iat[1, 1] = np.nan pnl.iat[2, 3] = 60 for axis in range(2): expected = pnl.ffill(axis=axis) / pnl.ffill(axis=axis).shift(axis=axis) - 1 result = pnl.pct_change(axis=axis, fill_method="pad") tm.assert_frame_equal(result, expected) def test_pct_change(self, datetime_frame): rs = datetime_frame.pct_change(fill_method=None) tm.assert_frame_equal(rs, datetime_frame / datetime_frame.shift(1) - 1) rs = datetime_frame.pct_change(2) filled = datetime_frame.fillna(method="pad") tm.assert_frame_equal(rs, filled / filled.shift(2) - 1) rs = datetime_frame.pct_change(fill_method="bfill", limit=1) filled = datetime_frame.fillna(method="bfill", limit=1) tm.assert_frame_equal(rs, filled / filled.shift(1) - 1) rs = datetime_frame.pct_change(freq="5D") filled = datetime_frame.fillna(method="pad") tm.assert_frame_equal( rs, (filled / filled.shift(freq="5D") - 1).reindex_like(filled) ) def test_pct_change_shift_over_nas(self): s = Series([1.0, 1.5, np.nan, 2.5, 3.0]) df = DataFrame({"a": s, "b": s}) chg = df.pct_change() expected = Series([np.nan, 0.5, 0.0, 2.5 / 1.5 - 1, 0.2]) edf = DataFrame({"a": expected, "b": expected}) tm.assert_frame_equal(chg, edf) @pytest.mark.parametrize( "freq, periods, fill_method, limit", [ ("5B", 5, None, None), ("3B", 3, None, None), ("3B", 3, "bfill", None), ("7B", 7, "pad", 1), ("7B", 7, "bfill", 3), ("14B", 14, None, None), ], ) def test_pct_change_periods_freq( self, datetime_frame, freq, periods, fill_method, limit ): # GH#7292 rs_freq = datetime_frame.pct_change( freq=freq, fill_method=fill_method, limit=limit ) rs_periods = datetime_frame.pct_change( periods, fill_method=fill_method, limit=limit ) tm.assert_frame_equal(rs_freq, rs_periods) empty_ts = DataFrame(index=datetime_frame.index, columns=datetime_frame.columns) rs_freq = empty_ts.pct_change(freq=freq, fill_method=fill_method, limit=limit) rs_periods = empty_ts.pct_change(periods, fill_method=fill_method, limit=limit) tm.assert_frame_equal(rs_freq, rs_periods) @pytest.mark.parametrize("fill_method", ["pad", "ffill", None]) def test_pct_change_with_duplicated_indices(fill_method): # GH30463 data = DataFrame( {0: [np.nan, 1, 2, 3, 9, 18], 1: [0, 1, np.nan, 3, 9, 18]}, index=["a", "b"] * 3 ) result = data.pct_change(fill_method=fill_method) if fill_method is None: second_column = [np.nan, np.inf, np.nan, np.nan, 2.0, 1.0] else: second_column = [np.nan, np.inf, 0.0, 2.0, 2.0, 1.0] expected = DataFrame( {0: [np.nan, np.nan, 1.0, 0.5, 2.0, 1.0], 1: second_column}, index=["a", "b"] * 3, ) tm.assert_frame_equal(result, expected)