from datetime import timedelta import numpy as np import pytest from pandas import ( DataFrame, DatetimeIndex, PeriodIndex, Series, Timedelta, date_range, period_range, to_datetime, ) import pandas._testing as tm def _get_with_delta(delta, freq="A-DEC"): return date_range( to_datetime("1/1/2001") + delta, to_datetime("12/31/2009") + delta, freq=freq, ) class TestToTimestamp: def test_to_timestamp(self, frame_or_series): K = 5 index = period_range(freq="A", start="1/1/2001", end="12/1/2009") obj = DataFrame( np.random.randn(len(index), K), index=index, columns=["A", "B", "C", "D", "E"], ) obj["mix"] = "a" obj = tm.get_obj(obj, frame_or_series) exp_index = date_range("1/1/2001", end="12/31/2009", freq="A-DEC") exp_index = exp_index + Timedelta(1, "D") - Timedelta(1, "ns") result = obj.to_timestamp("D", "end") tm.assert_index_equal(result.index, exp_index) tm.assert_numpy_array_equal(result.values, obj.values) if frame_or_series is Series: assert result.name == "A" exp_index = date_range("1/1/2001", end="1/1/2009", freq="AS-JAN") result = obj.to_timestamp("D", "start") tm.assert_index_equal(result.index, exp_index) result = obj.to_timestamp(how="start") tm.assert_index_equal(result.index, exp_index) delta = timedelta(hours=23) result = obj.to_timestamp("H", "end") exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "h") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) delta = timedelta(hours=23, minutes=59) result = obj.to_timestamp("T", "end") exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "m") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) result = obj.to_timestamp("S", "end") delta = timedelta(hours=23, minutes=59, seconds=59) exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "s") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) def test_to_timestamp_columns(self): K = 5 index = period_range(freq="A", start="1/1/2001", end="12/1/2009") df = DataFrame( np.random.randn(len(index), K), index=index, columns=["A", "B", "C", "D", "E"], ) df["mix"] = "a" # columns df = df.T exp_index = date_range("1/1/2001", end="12/31/2009", freq="A-DEC") exp_index = exp_index + Timedelta(1, "D") - Timedelta(1, "ns") result = df.to_timestamp("D", "end", axis=1) tm.assert_index_equal(result.columns, exp_index) tm.assert_numpy_array_equal(result.values, df.values) exp_index = date_range("1/1/2001", end="1/1/2009", freq="AS-JAN") result = df.to_timestamp("D", "start", axis=1) tm.assert_index_equal(result.columns, exp_index) delta = timedelta(hours=23) result = df.to_timestamp("H", "end", axis=1) exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "h") - Timedelta(1, "ns") tm.assert_index_equal(result.columns, exp_index) delta = timedelta(hours=23, minutes=59) result = df.to_timestamp("T", "end", axis=1) exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "m") - Timedelta(1, "ns") tm.assert_index_equal(result.columns, exp_index) result = df.to_timestamp("S", "end", axis=1) delta = timedelta(hours=23, minutes=59, seconds=59) exp_index = _get_with_delta(delta) exp_index = exp_index + Timedelta(1, "s") - Timedelta(1, "ns") tm.assert_index_equal(result.columns, exp_index) result1 = df.to_timestamp("5t", axis=1) result2 = df.to_timestamp("t", axis=1) expected = date_range("2001-01-01", "2009-01-01", freq="AS") assert isinstance(result1.columns, DatetimeIndex) assert isinstance(result2.columns, DatetimeIndex) tm.assert_numpy_array_equal(result1.columns.asi8, expected.asi8) tm.assert_numpy_array_equal(result2.columns.asi8, expected.asi8) # PeriodIndex.to_timestamp always use 'infer' assert result1.columns.freqstr == "AS-JAN" assert result2.columns.freqstr == "AS-JAN" def to_timestamp_invalid_axis(self): index = period_range(freq="A", start="1/1/2001", end="12/1/2009") obj = DataFrame(np.random.randn(len(index), 5), index=index) # invalid axis with pytest.raises(ValueError, match="axis"): obj.to_timestamp(axis=2) def test_to_timestamp_hourly(self, frame_or_series): index = period_range(freq="H", start="1/1/2001", end="1/2/2001") obj = Series(1, index=index, name="foo") if frame_or_series is not Series: obj = obj.to_frame() exp_index = date_range("1/1/2001 00:59:59", end="1/2/2001 00:59:59", freq="H") result = obj.to_timestamp(how="end") exp_index = exp_index + Timedelta(1, "s") - Timedelta(1, "ns") tm.assert_index_equal(result.index, exp_index) if frame_or_series is Series: assert result.name == "foo" def test_to_timestamp_raises(self, index, frame_or_series): # GH#33327 obj = frame_or_series(index=index, dtype=object) if not isinstance(index, PeriodIndex): msg = f"unsupported Type {type(index).__name__}" with pytest.raises(TypeError, match=msg): obj.to_timestamp()