import numpy as np import pandas as pd import pandas._testing as tm def test_data_frame_value_counts_unsorted(): df = pd.DataFrame( {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, index=["falcon", "dog", "cat", "ant"], ) result = df.value_counts(sort=False) expected = pd.Series( data=[1, 2, 1], index=pd.MultiIndex.from_arrays( [(2, 4, 6), (2, 0, 0)], names=["num_legs", "num_wings"] ), ) tm.assert_series_equal(result, expected) def test_data_frame_value_counts_ascending(): df = pd.DataFrame( {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, index=["falcon", "dog", "cat", "ant"], ) result = df.value_counts(ascending=True) expected = pd.Series( data=[1, 1, 2], index=pd.MultiIndex.from_arrays( [(2, 6, 4), (2, 0, 0)], names=["num_legs", "num_wings"] ), ) tm.assert_series_equal(result, expected) def test_data_frame_value_counts_default(): df = pd.DataFrame( {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, index=["falcon", "dog", "cat", "ant"], ) result = df.value_counts() expected = pd.Series( data=[2, 1, 1], index=pd.MultiIndex.from_arrays( [(4, 2, 6), (0, 2, 0)], names=["num_legs", "num_wings"] ), ) tm.assert_series_equal(result, expected) def test_data_frame_value_counts_normalize(): df = pd.DataFrame( {"num_legs": [2, 4, 4, 6], "num_wings": [2, 0, 0, 0]}, index=["falcon", "dog", "cat", "ant"], ) result = df.value_counts(normalize=True) expected = pd.Series( data=[0.5, 0.25, 0.25], index=pd.MultiIndex.from_arrays( [(4, 2, 6), (0, 2, 0)], names=["num_legs", "num_wings"] ), ) tm.assert_series_equal(result, expected) def test_data_frame_value_counts_single_col_default(): df = pd.DataFrame({"num_legs": [2, 4, 4, 6]}) result = df.value_counts() expected = pd.Series( data=[2, 1, 1], index=pd.MultiIndex.from_arrays([[4, 2, 6]], names=["num_legs"]), ) tm.assert_series_equal(result, expected) def test_data_frame_value_counts_empty(): df_no_cols = pd.DataFrame() result = df_no_cols.value_counts() expected = pd.Series([], dtype=np.int64) tm.assert_series_equal(result, expected) def test_data_frame_value_counts_empty_normalize(): df_no_cols = pd.DataFrame() result = df_no_cols.value_counts(normalize=True) expected = pd.Series([], dtype=np.float64) tm.assert_series_equal(result, expected) def test_data_frame_value_counts_dropna_true(nulls_fixture): # GH 41334 df = pd.DataFrame( { "first_name": ["John", "Anne", "John", "Beth"], "middle_name": ["Smith", nulls_fixture, nulls_fixture, "Louise"], }, ) result = df.value_counts() expected = pd.Series( data=[1, 1], index=pd.MultiIndex.from_arrays( [("Beth", "John"), ("Louise", "Smith")], names=["first_name", "middle_name"] ), ) tm.assert_series_equal(result, expected) def test_data_frame_value_counts_dropna_false(nulls_fixture): # GH 41334 df = pd.DataFrame( { "first_name": ["John", "Anne", "John", "Beth"], "middle_name": ["Smith", nulls_fixture, nulls_fixture, "Louise"], }, ) result = df.value_counts(dropna=False) expected = pd.Series( data=[1, 1, 1, 1], index=pd.MultiIndex( levels=[ pd.Index(["Anne", "Beth", "John"]), pd.Index(["Louise", "Smith", nulls_fixture]), ], codes=[[0, 1, 2, 2], [2, 0, 1, 2]], names=["first_name", "middle_name"], ), ) tm.assert_series_equal(result, expected)