import pandas as pd from pandas import ( DataFrame, Index, Series, Timestamp, date_range, ) import pandas._testing as tm class TestDatetimeIndex: def test_indexing_with_datetime_tz(self): # GH#8260 # support datetime64 with tz idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo") dr = date_range("20130110", periods=3) df = DataFrame({"A": idx, "B": dr}) df["C"] = idx df.iloc[1, 1] = pd.NaT df.iloc[1, 2] = pd.NaT expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) # indexing result = df.iloc[1] tm.assert_series_equal(result, expected) result = df.loc[1] tm.assert_series_equal(result, expected) def test_indexing_fast_xs(self): # indexing - fast_xs df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")}) result = df.iloc[5] expected = Series( [Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], index=["a"], name=5 ) tm.assert_series_equal(result, expected) result = df.loc[5] tm.assert_series_equal(result, expected) # indexing - boolean result = df[df.a > df.a[3]] expected = df.iloc[4:] tm.assert_frame_equal(result, expected) def test_consistency_with_tz_aware_scalar(self): # xef gh-12938 # various ways of indexing the same tz-aware scalar df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame() df = pd.concat([df, df]).reset_index(drop=True) expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels") result = df[0][0] assert result == expected result = df.iloc[0, 0] assert result == expected result = df.loc[0, 0] assert result == expected result = df.iat[0, 0] assert result == expected result = df.at[0, 0] assert result == expected result = df[0].loc[0] assert result == expected result = df[0].at[0] assert result == expected def test_indexing_with_datetimeindex_tz(self, indexer_sl): # GH 12050 # indexing on a series with a datetimeindex with tz index = date_range("2015-01-01", periods=2, tz="utc") ser = Series(range(2), index=index, dtype="int64") # list-like indexing for sel in (index, list(index)): # getitem result = indexer_sl(ser)[sel] expected = ser.copy() if sel is not index: expected.index = expected.index._with_freq(None) tm.assert_series_equal(result, expected) # setitem result = ser.copy() indexer_sl(result)[sel] = 1 expected = Series(1, index=index) tm.assert_series_equal(result, expected) # single element indexing # getitem assert indexer_sl(ser)[index[1]] == 1 # setitem result = ser.copy() indexer_sl(result)[index[1]] = 5 expected = Series([0, 5], index=index) tm.assert_series_equal(result, expected) def test_nanosecond_getitem_setitem_with_tz(self): # GH 11679 data = ["2016-06-28 08:30:00.123456789"] index = pd.DatetimeIndex(data, dtype="datetime64[ns, America/Chicago]") df = DataFrame({"a": [10]}, index=index) result = df.loc[df.index[0]] expected = Series(10, index=["a"], name=df.index[0]) tm.assert_series_equal(result, expected) result = df.copy() result.loc[df.index[0], "a"] = -1 expected = DataFrame(-1, index=index, columns=["a"]) tm.assert_frame_equal(result, expected) def test_getitem_str_slice_millisecond_resolution(self, frame_or_series): # GH#33589 keys = [ "2017-10-25T16:25:04.151", "2017-10-25T16:25:04.252", "2017-10-25T16:50:05.237", "2017-10-25T16:50:05.238", ] obj = frame_or_series( [1, 2, 3, 4], index=[Timestamp(x) for x in keys], ) result = obj[keys[1] : keys[2]] expected = frame_or_series( [2, 3], index=[ Timestamp(keys[1]), Timestamp(keys[2]), ], ) tm.assert_equal(result, expected)