""" test parquet compat """ import datetime from io import BytesIO import os import pathlib from warnings import ( catch_warnings, filterwarnings, ) import numpy as np import pytest from pandas._config import get_option from pandas.compat.pyarrow import ( pa_version_under2p0, pa_version_under5p0, pa_version_under6p0, ) import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm from pandas.util.version import Version from pandas.io.parquet import ( FastParquetImpl, PyArrowImpl, get_engine, read_parquet, to_parquet, ) try: import pyarrow _HAVE_PYARROW = True except ImportError: _HAVE_PYARROW = False try: with catch_warnings(): # `np.bool` is a deprecated alias... filterwarnings("ignore", "`np.bool`", category=DeprecationWarning) # accessing pd.Int64Index in pd namespace filterwarnings("ignore", ".*Int64Index.*", category=FutureWarning) import fastparquet _HAVE_FASTPARQUET = True except ImportError: _HAVE_FASTPARQUET = False pytestmark = pytest.mark.filterwarnings( "ignore:RangeIndex.* is deprecated:DeprecationWarning" ) # TODO(ArrayManager) fastparquet relies on BlockManager internals # setup engines & skips @pytest.fixture( params=[ pytest.param( "fastparquet", marks=pytest.mark.skipif( not _HAVE_FASTPARQUET or get_option("mode.data_manager") == "array", reason="fastparquet is not installed or ArrayManager is used", ), ), pytest.param( "pyarrow", marks=pytest.mark.skipif( not _HAVE_PYARROW, reason="pyarrow is not installed" ), ), ] ) def engine(request): return request.param @pytest.fixture def pa(): if not _HAVE_PYARROW: pytest.skip("pyarrow is not installed") return "pyarrow" @pytest.fixture def fp(): if not _HAVE_FASTPARQUET: pytest.skip("fastparquet is not installed") elif get_option("mode.data_manager") == "array": pytest.skip("ArrayManager is not supported with fastparquet") return "fastparquet" @pytest.fixture def df_compat(): return pd.DataFrame({"A": [1, 2, 3], "B": "foo"}) @pytest.fixture def df_cross_compat(): df = pd.DataFrame( { "a": list("abc"), "b": list(range(1, 4)), # 'c': np.arange(3, 6).astype('u1'), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("20130101", periods=3), # 'g': pd.date_range('20130101', periods=3, # tz='US/Eastern'), # 'h': pd.date_range('20130101', periods=3, freq='ns') } ) return df @pytest.fixture def df_full(): return pd.DataFrame( { "string": list("abc"), "string_with_nan": ["a", np.nan, "c"], "string_with_none": ["a", None, "c"], "bytes": [b"foo", b"bar", b"baz"], "unicode": ["foo", "bar", "baz"], "int": list(range(1, 4)), "uint": np.arange(3, 6).astype("u1"), "float": np.arange(4.0, 7.0, dtype="float64"), "float_with_nan": [2.0, np.nan, 3.0], "bool": [True, False, True], "datetime": pd.date_range("20130101", periods=3), "datetime_with_nat": [ pd.Timestamp("20130101"), pd.NaT, pd.Timestamp("20130103"), ], } ) @pytest.fixture( params=[ datetime.datetime.now(datetime.timezone.utc), datetime.datetime.now(datetime.timezone.min), datetime.datetime.now(datetime.timezone.max), datetime.datetime.strptime("2019-01-04T16:41:24+0200", "%Y-%m-%dT%H:%M:%S%z"), datetime.datetime.strptime("2019-01-04T16:41:24+0215", "%Y-%m-%dT%H:%M:%S%z"), datetime.datetime.strptime("2019-01-04T16:41:24-0200", "%Y-%m-%dT%H:%M:%S%z"), datetime.datetime.strptime("2019-01-04T16:41:24-0215", "%Y-%m-%dT%H:%M:%S%z"), ] ) def timezone_aware_date_list(request): return request.param def check_round_trip( df, engine=None, path=None, write_kwargs=None, read_kwargs=None, expected=None, check_names=True, check_like=False, check_dtype=True, repeat=2, ): """Verify parquet serializer and deserializer produce the same results. Performs a pandas to disk and disk to pandas round trip, then compares the 2 resulting DataFrames to verify equality. Parameters ---------- df: Dataframe engine: str, optional 'pyarrow' or 'fastparquet' path: str, optional write_kwargs: dict of str:str, optional read_kwargs: dict of str:str, optional expected: DataFrame, optional Expected deserialization result, otherwise will be equal to `df` check_names: list of str, optional Closed set of column names to be compared check_like: bool, optional If True, ignore the order of index & columns. repeat: int, optional How many times to repeat the test """ write_kwargs = write_kwargs or {"compression": None} read_kwargs = read_kwargs or {} if expected is None: expected = df if engine: write_kwargs["engine"] = engine read_kwargs["engine"] = engine def compare(repeat): for _ in range(repeat): df.to_parquet(path, **write_kwargs) with catch_warnings(record=True): actual = read_parquet(path, **read_kwargs) tm.assert_frame_equal( expected, actual, check_names=check_names, check_like=check_like, check_dtype=check_dtype, ) if path is None: with tm.ensure_clean() as path: compare(repeat) else: compare(repeat) def check_partition_names(path, expected): """Check partitions of a parquet file are as expected. Parameters ---------- path: str Path of the dataset. expected: iterable of str Expected partition names. """ if pa_version_under5p0: import pyarrow.parquet as pq dataset = pq.ParquetDataset(path, validate_schema=False) assert len(dataset.partitions.partition_names) == len(expected) assert dataset.partitions.partition_names == set(expected) else: import pyarrow.dataset as ds dataset = ds.dataset(path, partitioning="hive") assert dataset.partitioning.schema.names == expected def test_invalid_engine(df_compat): msg = "engine must be one of 'pyarrow', 'fastparquet'" with pytest.raises(ValueError, match=msg): check_round_trip(df_compat, "foo", "bar") def test_options_py(df_compat, pa): # use the set option with pd.option_context("io.parquet.engine", "pyarrow"): check_round_trip(df_compat) def test_options_fp(df_compat, fp): # use the set option with pd.option_context("io.parquet.engine", "fastparquet"): check_round_trip(df_compat) def test_options_auto(df_compat, fp, pa): # use the set option with pd.option_context("io.parquet.engine", "auto"): check_round_trip(df_compat) def test_options_get_engine(fp, pa): assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "pyarrow"): assert isinstance(get_engine("auto"), PyArrowImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "fastparquet"): assert isinstance(get_engine("auto"), FastParquetImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "auto"): assert isinstance(get_engine("auto"), PyArrowImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) def test_get_engine_auto_error_message(): # Expect different error messages from get_engine(engine="auto") # if engines aren't installed vs. are installed but bad version from pandas.compat._optional import VERSIONS # Do we have engines installed, but a bad version of them? pa_min_ver = VERSIONS.get("pyarrow") fp_min_ver = VERSIONS.get("fastparquet") have_pa_bad_version = ( False if not _HAVE_PYARROW else Version(pyarrow.__version__) < Version(pa_min_ver) ) have_fp_bad_version = ( False if not _HAVE_FASTPARQUET else Version(fastparquet.__version__) < Version(fp_min_ver) ) # Do we have usable engines installed? have_usable_pa = _HAVE_PYARROW and not have_pa_bad_version have_usable_fp = _HAVE_FASTPARQUET and not have_fp_bad_version if not have_usable_pa and not have_usable_fp: # No usable engines found. if have_pa_bad_version: match = f"Pandas requires version .{pa_min_ver}. or newer of .pyarrow." with pytest.raises(ImportError, match=match): get_engine("auto") else: match = "Missing optional dependency .pyarrow." with pytest.raises(ImportError, match=match): get_engine("auto") if have_fp_bad_version: match = f"Pandas requires version .{fp_min_ver}. or newer of .fastparquet." with pytest.raises(ImportError, match=match): get_engine("auto") else: match = "Missing optional dependency .fastparquet." with pytest.raises(ImportError, match=match): get_engine("auto") def test_cross_engine_pa_fp(df_cross_compat, pa, fp): # cross-compat with differing reading/writing engines df = df_cross_compat with tm.ensure_clean() as path: df.to_parquet(path, engine=pa, compression=None) result = read_parquet(path, engine=fp) tm.assert_frame_equal(result, df) result = read_parquet(path, engine=fp, columns=["a", "d"]) tm.assert_frame_equal(result, df[["a", "d"]]) def test_cross_engine_fp_pa(request, df_cross_compat, pa, fp): # cross-compat with differing reading/writing engines df = df_cross_compat with tm.ensure_clean() as path: df.to_parquet(path, engine=fp, compression=None) with catch_warnings(record=True): result = read_parquet(path, engine=pa) tm.assert_frame_equal(result, df) result = read_parquet(path, engine=pa, columns=["a", "d"]) tm.assert_frame_equal(result, df[["a", "d"]]) class Base: def check_error_on_write(self, df, engine, exc, err_msg): # check that we are raising the exception on writing with tm.ensure_clean() as path: with pytest.raises(exc, match=err_msg): to_parquet(df, path, engine, compression=None) def check_external_error_on_write(self, df, engine, exc): # check that an external library is raising the exception on writing with tm.ensure_clean() as path: with tm.external_error_raised(exc): to_parquet(df, path, engine, compression=None) @pytest.mark.network @tm.network( url=( "https://raw.githubusercontent.com/pandas-dev/pandas/" "main/pandas/tests/io/data/parquet/simple.parquet" ), check_before_test=True, ) def test_parquet_read_from_url(self, df_compat, engine): if engine != "auto": pytest.importorskip(engine) url = ( "https://raw.githubusercontent.com/pandas-dev/pandas/" "main/pandas/tests/io/data/parquet/simple.parquet" ) df = read_parquet(url) tm.assert_frame_equal(df, df_compat) class TestBasic(Base): def test_error(self, engine): for obj in [ pd.Series([1, 2, 3]), 1, "foo", pd.Timestamp("20130101"), np.array([1, 2, 3]), ]: msg = "to_parquet only supports IO with DataFrames" self.check_error_on_write(obj, engine, ValueError, msg) def test_columns_dtypes(self, engine): df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) # unicode df.columns = ["foo", "bar"] check_round_trip(df, engine) def test_columns_dtypes_invalid(self, engine): df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) msg = "parquet must have string column names" # numeric df.columns = [0, 1] self.check_error_on_write(df, engine, ValueError, msg) # bytes df.columns = [b"foo", b"bar"] self.check_error_on_write(df, engine, ValueError, msg) # python object df.columns = [ datetime.datetime(2011, 1, 1, 0, 0), datetime.datetime(2011, 1, 1, 1, 1), ] self.check_error_on_write(df, engine, ValueError, msg) @pytest.mark.parametrize("compression", [None, "gzip", "snappy", "brotli"]) def test_compression(self, engine, compression): if compression == "snappy": pytest.importorskip("snappy") elif compression == "brotli": pytest.importorskip("brotli") df = pd.DataFrame({"A": [1, 2, 3]}) check_round_trip(df, engine, write_kwargs={"compression": compression}) def test_read_columns(self, engine): # GH18154 df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) expected = pd.DataFrame({"string": list("abc")}) check_round_trip( df, engine, expected=expected, read_kwargs={"columns": ["string"]} ) def test_write_index(self, engine): check_names = engine != "fastparquet" df = pd.DataFrame({"A": [1, 2, 3]}) check_round_trip(df, engine) indexes = [ [2, 3, 4], pd.date_range("20130101", periods=3), list("abc"), [1, 3, 4], ] # non-default index for index in indexes: df.index = index if isinstance(index, pd.DatetimeIndex): df.index = df.index._with_freq(None) # freq doesn't round-trip check_round_trip(df, engine, check_names=check_names) # index with meta-data df.index = [0, 1, 2] df.index.name = "foo" check_round_trip(df, engine) def test_write_multiindex(self, pa): # Not supported in fastparquet as of 0.1.3 or older pyarrow version engine = pa df = pd.DataFrame({"A": [1, 2, 3]}) index = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]) df.index = index check_round_trip(df, engine) def test_multiindex_with_columns(self, pa): engine = pa dates = pd.date_range("01-Jan-2018", "01-Dec-2018", freq="MS") df = pd.DataFrame(np.random.randn(2 * len(dates), 3), columns=list("ABC")) index1 = pd.MultiIndex.from_product( [["Level1", "Level2"], dates], names=["level", "date"] ) index2 = index1.copy(names=None) for index in [index1, index2]: df.index = index check_round_trip(df, engine) check_round_trip( df, engine, read_kwargs={"columns": ["A", "B"]}, expected=df[["A", "B"]] ) def test_write_ignoring_index(self, engine): # ENH 20768 # Ensure index=False omits the index from the written Parquet file. df = pd.DataFrame({"a": [1, 2, 3], "b": ["q", "r", "s"]}) write_kwargs = {"compression": None, "index": False} # Because we're dropping the index, we expect the loaded dataframe to # have the default integer index. expected = df.reset_index(drop=True) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) # Ignore custom index df = pd.DataFrame( {"a": [1, 2, 3], "b": ["q", "r", "s"]}, index=["zyx", "wvu", "tsr"] ) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) # Ignore multi-indexes as well. arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = pd.DataFrame( {"one": list(range(8)), "two": [-i for i in range(8)]}, index=arrays ) expected = df.reset_index(drop=True) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) def test_write_column_multiindex(self, engine): # Not able to write column multi-indexes with non-string column names. mi_columns = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]) df = pd.DataFrame(np.random.randn(4, 3), columns=mi_columns) msg = ( r"\s*parquet must have string column names for all values in\s*" "each level of the MultiIndex" ) self.check_error_on_write(df, engine, ValueError, msg) def test_write_column_multiindex_nonstring(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Not able to write column multi-indexes with non-string column names arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], [1, 2, 1, 2, 1, 2, 1, 2], ] df = pd.DataFrame(np.random.randn(8, 8), columns=arrays) df.columns.names = ["Level1", "Level2"] msg = ( r"\s*parquet must have string column names for all values in\s*" "each level of the MultiIndex" ) self.check_error_on_write(df, engine, ValueError, msg) def test_write_column_multiindex_string(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Write column multi-indexes with string column names arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = pd.DataFrame(np.random.randn(8, 8), columns=arrays) df.columns.names = ["ColLevel1", "ColLevel2"] check_round_trip(df, engine) def test_write_column_index_string(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Write column indexes with string column names arrays = ["bar", "baz", "foo", "qux"] df = pd.DataFrame(np.random.randn(8, 4), columns=arrays) df.columns.name = "StringCol" check_round_trip(df, engine) def test_write_column_index_nonstring(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Write column indexes with string column names arrays = [1, 2, 3, 4] df = pd.DataFrame(np.random.randn(8, 4), columns=arrays) df.columns.name = "NonStringCol" msg = r"parquet must have string column names" self.check_error_on_write(df, engine, ValueError, msg) def test_use_nullable_dtypes(self, engine, request): import pyarrow.parquet as pq if engine == "fastparquet": # We are manually disabling fastparquet's # nullable dtype support pending discussion mark = pytest.mark.xfail( reason="Fastparquet nullable dtype support is disabled" ) request.node.add_marker(mark) table = pyarrow.table( { "a": pyarrow.array([1, 2, 3, None], "int64"), "b": pyarrow.array([1, 2, 3, None], "uint8"), "c": pyarrow.array(["a", "b", "c", None]), "d": pyarrow.array([True, False, True, None]), # Test that nullable dtypes used even in absence of nulls "e": pyarrow.array([1, 2, 3, 4], "int64"), } ) with tm.ensure_clean() as path: # write manually with pyarrow to write integers pq.write_table(table, path) result1 = read_parquet(path, engine=engine) result2 = read_parquet(path, engine=engine, use_nullable_dtypes=True) assert result1["a"].dtype == np.dtype("float64") expected = pd.DataFrame( { "a": pd.array([1, 2, 3, None], dtype="Int64"), "b": pd.array([1, 2, 3, None], dtype="UInt8"), "c": pd.array(["a", "b", "c", None], dtype="string"), "d": pd.array([True, False, True, None], dtype="boolean"), "e": pd.array([1, 2, 3, 4], dtype="Int64"), } ) if engine == "fastparquet": # Fastparquet doesn't support string columns yet # Only int and boolean result2 = result2.drop("c", axis=1) expected = expected.drop("c", axis=1) tm.assert_frame_equal(result2, expected) @pytest.mark.parametrize( "dtype", [ "Int64", "UInt8", "boolean", "object", "datetime64[ns, UTC]", "float", "period[D]", "Float64", "string", ], ) def test_read_empty_array(self, pa, dtype): # GH #41241 df = pd.DataFrame( { "value": pd.array([], dtype=dtype), } ) check_round_trip(df, pa, read_kwargs={"use_nullable_dtypes": True}) @pytest.mark.filterwarnings("ignore:CategoricalBlock is deprecated:DeprecationWarning") class TestParquetPyArrow(Base): def test_basic(self, pa, df_full): df = df_full # additional supported types for pyarrow dti = pd.date_range("20130101", periods=3, tz="Europe/Brussels") dti = dti._with_freq(None) # freq doesn't round-trip df["datetime_tz"] = dti df["bool_with_none"] = [True, None, True] check_round_trip(df, pa) def test_basic_subset_columns(self, pa, df_full): # GH18628 df = df_full # additional supported types for pyarrow df["datetime_tz"] = pd.date_range("20130101", periods=3, tz="Europe/Brussels") check_round_trip( df, pa, expected=df[["string", "int"]], read_kwargs={"columns": ["string", "int"]}, ) def test_to_bytes_without_path_or_buf_provided(self, pa, df_full): # GH 37105 buf_bytes = df_full.to_parquet(engine=pa) assert isinstance(buf_bytes, bytes) buf_stream = BytesIO(buf_bytes) res = read_parquet(buf_stream) tm.assert_frame_equal(df_full, res) def test_duplicate_columns(self, pa): # not currently able to handle duplicate columns df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy() self.check_error_on_write(df, pa, ValueError, "Duplicate column names found") def test_unsupported(self, pa): # timedelta df = pd.DataFrame({"a": pd.timedelta_range("1 day", periods=3)}) self.check_external_error_on_write(df, pa, NotImplementedError) # mixed python objects df = pd.DataFrame({"a": ["a", 1, 2.0]}) # pyarrow 0.11 raises ArrowTypeError # older pyarrows raise ArrowInvalid self.check_external_error_on_write(df, pa, pyarrow.ArrowException) def test_categorical(self, pa): # supported in >= 0.7.0 df = pd.DataFrame() df["a"] = pd.Categorical(list("abcdef")) # test for null, out-of-order values, and unobserved category df["b"] = pd.Categorical( ["bar", "foo", "foo", "bar", None, "bar"], dtype=pd.CategoricalDtype(["foo", "bar", "baz"]), ) # test for ordered flag df["c"] = pd.Categorical( ["a", "b", "c", "a", "c", "b"], categories=["b", "c", "d"], ordered=True ) check_round_trip(df, pa) @pytest.mark.single_cpu def test_s3_roundtrip_explicit_fs(self, df_compat, s3_resource, pa, s3so): s3fs = pytest.importorskip("s3fs") s3 = s3fs.S3FileSystem(**s3so) kw = {"filesystem": s3} check_round_trip( df_compat, pa, path="pandas-test/pyarrow.parquet", read_kwargs=kw, write_kwargs=kw, ) @pytest.mark.single_cpu def test_s3_roundtrip(self, df_compat, s3_resource, pa, s3so): # GH #19134 s3so = {"storage_options": s3so} check_round_trip( df_compat, pa, path="s3://pandas-test/pyarrow.parquet", read_kwargs=s3so, write_kwargs=s3so, ) @pytest.mark.single_cpu @td.skip_if_no("s3fs") # also requires flask @pytest.mark.parametrize( "partition_col", [ ["A"], [], ], ) def test_s3_roundtrip_for_dir( self, df_compat, s3_resource, pa, partition_col, s3so ): # GH #26388 expected_df = df_compat.copy() # GH #35791 # read_table uses the new Arrow Datasets API since pyarrow 1.0.0 # Previous behaviour was pyarrow partitioned columns become 'category' dtypes # These are added to back of dataframe on read. In new API category dtype is # only used if partition field is string, but this changed again to use # category dtype for all types (not only strings) in pyarrow 2.0.0 if partition_col: partition_col_type = "int32" if pa_version_under2p0 else "category" expected_df[partition_col] = expected_df[partition_col].astype( partition_col_type ) check_round_trip( df_compat, pa, expected=expected_df, path="s3://pandas-test/parquet_dir", read_kwargs={"storage_options": s3so}, write_kwargs={ "partition_cols": partition_col, "compression": None, "storage_options": s3so, }, check_like=True, repeat=1, ) @td.skip_if_no("pyarrow") def test_read_file_like_obj_support(self, df_compat): buffer = BytesIO() df_compat.to_parquet(buffer) df_from_buf = read_parquet(buffer) tm.assert_frame_equal(df_compat, df_from_buf) @td.skip_if_no("pyarrow") def test_expand_user(self, df_compat, monkeypatch): monkeypatch.setenv("HOME", "TestingUser") monkeypatch.setenv("USERPROFILE", "TestingUser") with pytest.raises(OSError, match=r".*TestingUser.*"): read_parquet("~/file.parquet") with pytest.raises(OSError, match=r".*TestingUser.*"): df_compat.to_parquet("~/file.parquet") def test_partition_cols_supported(self, pa, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet(path, partition_cols=partition_cols, compression=None) check_partition_names(path, partition_cols) assert read_parquet(path).shape == df.shape def test_partition_cols_string(self, pa, df_full): # GH #27117 partition_cols = "bool" partition_cols_list = [partition_cols] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet(path, partition_cols=partition_cols, compression=None) check_partition_names(path, partition_cols_list) assert read_parquet(path).shape == df.shape @pytest.mark.parametrize("path_type", [str, pathlib.Path]) def test_partition_cols_pathlib(self, pa, df_compat, path_type): # GH 35902 partition_cols = "B" partition_cols_list = [partition_cols] df = df_compat with tm.ensure_clean_dir() as path_str: path = path_type(path_str) df.to_parquet(path, partition_cols=partition_cols_list) assert read_parquet(path).shape == df.shape def test_empty_dataframe(self, pa): # GH #27339 df = pd.DataFrame() check_round_trip(df, pa) def test_write_with_schema(self, pa): import pyarrow df = pd.DataFrame({"x": [0, 1]}) schema = pyarrow.schema([pyarrow.field("x", type=pyarrow.bool_())]) out_df = df.astype(bool) check_round_trip(df, pa, write_kwargs={"schema": schema}, expected=out_df) @td.skip_if_no("pyarrow") def test_additional_extension_arrays(self, pa): # test additional ExtensionArrays that are supported through the # __arrow_array__ protocol df = pd.DataFrame( { "a": pd.Series([1, 2, 3], dtype="Int64"), "b": pd.Series([1, 2, 3], dtype="UInt32"), "c": pd.Series(["a", None, "c"], dtype="string"), } ) check_round_trip(df, pa) df = pd.DataFrame({"a": pd.Series([1, 2, 3, None], dtype="Int64")}) check_round_trip(df, pa) @td.skip_if_no("pyarrow", min_version="1.0.0") def test_pyarrow_backed_string_array(self, pa, string_storage): # test ArrowStringArray supported through the __arrow_array__ protocol df = pd.DataFrame({"a": pd.Series(["a", None, "c"], dtype="string[pyarrow]")}) with pd.option_context("string_storage", string_storage): check_round_trip(df, pa, expected=df.astype(f"string[{string_storage}]")) @td.skip_if_no("pyarrow") def test_additional_extension_types(self, pa): # test additional ExtensionArrays that are supported through the # __arrow_array__ protocol + by defining a custom ExtensionType df = pd.DataFrame( { # Arrow does not yet support struct in writing to Parquet (ARROW-1644) # "c": pd.arrays.IntervalArray.from_tuples([(0, 1), (1, 2), (3, 4)]), "d": pd.period_range("2012-01-01", periods=3, freq="D"), } ) check_round_trip(df, pa) def test_timestamp_nanoseconds(self, pa): # with version 2.6, pyarrow defaults to writing the nanoseconds, so # this should work without error # Note in previous pyarrows(<6.0.0), only the pseudo-version 2.0 was available if not pa_version_under6p0: ver = "2.6" else: ver = "2.0" df = pd.DataFrame({"a": pd.date_range("2017-01-01", freq="1n", periods=10)}) check_round_trip(df, pa, write_kwargs={"version": ver}) def test_timezone_aware_index(self, pa, timezone_aware_date_list): if not pa_version_under2p0: # temporary skip this test until it is properly resolved # https://github.com/pandas-dev/pandas/issues/37286 pytest.skip() idx = 5 * [timezone_aware_date_list] df = pd.DataFrame(index=idx, data={"index_as_col": idx}) # see gh-36004 # compare time(zone) values only, skip their class: # pyarrow always creates fixed offset timezones using pytz.FixedOffset() # even if it was datetime.timezone() originally # # technically they are the same: # they both implement datetime.tzinfo # they both wrap datetime.timedelta() # this use-case sets the resolution to 1 minute check_round_trip(df, pa, check_dtype=False) @td.skip_if_no("pyarrow", min_version="1.0.0") def test_filter_row_groups(self, pa): # https://github.com/pandas-dev/pandas/issues/26551 df = pd.DataFrame({"a": list(range(0, 3))}) with tm.ensure_clean() as path: df.to_parquet(path, pa) result = read_parquet( path, pa, filters=[("a", "==", 0)], use_legacy_dataset=False ) assert len(result) == 1 def test_read_parquet_manager(self, pa, using_array_manager): # ensure that read_parquet honors the pandas.options.mode.data_manager option df = pd.DataFrame(np.random.randn(10, 3), columns=["A", "B", "C"]) with tm.ensure_clean() as path: df.to_parquet(path, pa) result = read_parquet(path, pa) if using_array_manager: assert isinstance(result._mgr, pd.core.internals.ArrayManager) else: assert isinstance(result._mgr, pd.core.internals.BlockManager) class TestParquetFastParquet(Base): def test_basic(self, fp, df_full): df = df_full dti = pd.date_range("20130101", periods=3, tz="US/Eastern") dti = dti._with_freq(None) # freq doesn't round-trip df["datetime_tz"] = dti df["timedelta"] = pd.timedelta_range("1 day", periods=3) check_round_trip(df, fp) @pytest.mark.skip(reason="not supported") def test_duplicate_columns(self, fp): # not currently able to handle duplicate columns df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy() msg = "Cannot create parquet dataset with duplicate column names" self.check_error_on_write(df, fp, ValueError, msg) def test_bool_with_none(self, fp): df = pd.DataFrame({"a": [True, None, False]}) expected = pd.DataFrame({"a": [1.0, np.nan, 0.0]}, dtype="float16") # Fastparquet bug in 0.7.1 makes it so that this dtype becomes # float64 check_round_trip(df, fp, expected=expected, check_dtype=False) def test_unsupported(self, fp): # period df = pd.DataFrame({"a": pd.period_range("2013", freq="M", periods=3)}) # error from fastparquet -> don't check exact error message self.check_error_on_write(df, fp, ValueError, None) # mixed df = pd.DataFrame({"a": ["a", 1, 2.0]}) msg = "Can't infer object conversion type" self.check_error_on_write(df, fp, ValueError, msg) def test_categorical(self, fp): df = pd.DataFrame({"a": pd.Categorical(list("abc"))}) check_round_trip(df, fp) def test_filter_row_groups(self, fp): d = {"a": list(range(0, 3))} df = pd.DataFrame(d) with tm.ensure_clean() as path: df.to_parquet(path, fp, compression=None, row_group_offsets=1) result = read_parquet(path, fp, filters=[("a", "==", 0)]) assert len(result) == 1 @pytest.mark.single_cpu def test_s3_roundtrip(self, df_compat, s3_resource, fp, s3so): # GH #19134 check_round_trip( df_compat, fp, path="s3://pandas-test/fastparquet.parquet", read_kwargs={"storage_options": s3so}, write_kwargs={"compression": None, "storage_options": s3so}, ) def test_partition_cols_supported(self, fp, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", partition_cols=partition_cols, compression=None, ) assert os.path.exists(path) import fastparquet actual_partition_cols = fastparquet.ParquetFile(path, False).cats assert len(actual_partition_cols) == 2 def test_partition_cols_string(self, fp, df_full): # GH #27117 partition_cols = "bool" df = df_full with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", partition_cols=partition_cols, compression=None, ) assert os.path.exists(path) import fastparquet actual_partition_cols = fastparquet.ParquetFile(path, False).cats assert len(actual_partition_cols) == 1 def test_partition_on_supported(self, fp, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", compression=None, partition_on=partition_cols, ) assert os.path.exists(path) import fastparquet actual_partition_cols = fastparquet.ParquetFile(path, False).cats assert len(actual_partition_cols) == 2 def test_error_on_using_partition_cols_and_partition_on(self, fp, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full msg = ( "Cannot use both partition_on and partition_cols. Use partition_cols for " "partitioning data" ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", compression=None, partition_on=partition_cols, partition_cols=partition_cols, ) def test_empty_dataframe(self, fp): # GH #27339 df = pd.DataFrame() expected = df.copy() expected.index.name = "index" check_round_trip(df, fp, expected=expected) def test_timezone_aware_index(self, fp, timezone_aware_date_list): idx = 5 * [timezone_aware_date_list] df = pd.DataFrame(index=idx, data={"index_as_col": idx}) expected = df.copy() expected.index.name = "index" check_round_trip(df, fp, expected=expected) def test_use_nullable_dtypes_not_supported(self, monkeypatch, fp): df = pd.DataFrame({"a": [1, 2]}) with tm.ensure_clean() as path: df.to_parquet(path) with pytest.raises(ValueError, match="not supported for the fastparquet"): read_parquet(path, engine="fastparquet", use_nullable_dtypes=True)