""" Test cases for GroupBy.plot """ import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( DataFrame, Index, Series, ) import pandas._testing as tm from pandas.tests.plotting.common import TestPlotBase pytestmark = pytest.mark.slow @td.skip_if_no_mpl class TestDataFrameGroupByPlots(TestPlotBase): def test_series_groupby_plotting_nominally_works(self): n = 10 weight = Series(np.random.normal(166, 20, size=n)) height = Series(np.random.normal(60, 10, size=n)) with tm.RNGContext(42): gender = np.random.choice(["male", "female"], size=n) weight.groupby(gender).plot() tm.close() height.groupby(gender).hist() tm.close() # Regression test for GH8733 height.groupby(gender).plot(alpha=0.5) tm.close() def test_plotting_with_float_index_works(self): # GH 7025 df = DataFrame( {"def": [1, 1, 1, 2, 2, 2, 3, 3, 3], "val": np.random.randn(9)}, index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0], ) df.groupby("def")["val"].plot() tm.close() df.groupby("def")["val"].apply(lambda x: x.plot()) tm.close() def test_hist_single_row(self): # GH10214 bins = np.arange(80, 100 + 2, 1) df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]}) df["Mark"].hist(by=df["ByCol"], bins=bins) df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]}) df["Mark"].hist(by=df["ByCol"], bins=bins) def test_plot_submethod_works(self): df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) df.groupby("z").plot.scatter("x", "y") tm.close() df.groupby("z")["x"].plot.line() tm.close() def test_plot_kwargs(self): df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) res = df.groupby("z").plot(kind="scatter", x="x", y="y") # check that a scatter plot is effectively plotted: the axes should # contain a PathCollection from the scatter plot (GH11805) assert len(res["a"].collections) == 1 res = df.groupby("z").plot.scatter(x="x", y="y") assert len(res["a"].collections) == 1 @pytest.mark.parametrize("column, expected_axes_num", [(None, 2), ("b", 1)]) def test_groupby_hist_frame_with_legend(self, column, expected_axes_num): # GH 6279 - DataFrameGroupBy histogram can have a legend expected_layout = (1, expected_axes_num) expected_labels = column or [["a"], ["b"]] index = Index(15 * ["1"] + 15 * ["2"], name="c") df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"]) g = df.groupby("c") for axes in g.hist(legend=True, column=column): self._check_axes_shape( axes, axes_num=expected_axes_num, layout=expected_layout ) for ax, expected_label in zip(axes[0], expected_labels): self._check_legend_labels(ax, expected_label) @pytest.mark.parametrize("column", [None, "b"]) def test_groupby_hist_frame_with_legend_raises(self, column): # GH 6279 - DataFrameGroupBy histogram with legend and label raises index = Index(15 * ["1"] + 15 * ["2"], name="c") df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"]) g = df.groupby("c") with pytest.raises(ValueError, match="Cannot use both legend and label"): g.hist(legend=True, column=column, label="d") def test_groupby_hist_series_with_legend(self): # GH 6279 - SeriesGroupBy histogram can have a legend index = Index(15 * ["1"] + 15 * ["2"], name="c") df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"]) g = df.groupby("c") for ax in g["a"].hist(legend=True): self._check_axes_shape(ax, axes_num=1, layout=(1, 1)) self._check_legend_labels(ax, ["1", "2"]) def test_groupby_hist_series_with_legend_raises(self): # GH 6279 - SeriesGroupBy histogram with legend and label raises index = Index(15 * ["1"] + 15 * ["2"], name="c") df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"]) g = df.groupby("c") with pytest.raises(ValueError, match="Cannot use both legend and label"): g.hist(legend=True, label="d")