from datetime import datetime import numpy as np import pytest from pandas import ( DataFrame, NaT, PeriodIndex, Series, ) import pandas._testing as tm from pandas.core.groupby.groupby import DataError from pandas.core.groupby.grouper import Grouper from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import period_range from pandas.core.indexes.timedeltas import timedelta_range from pandas.core.resample import _asfreq_compat # a fixture value can be overridden by the test parameter value. Note that the # value of the fixture can be overridden this way even if the test doesn't use # it directly (doesn't mention it in the function prototype). # see https://docs.pytest.org/en/latest/fixture.html#override-a-fixture-with-direct-test-parametrization # noqa:E501 # in this module we override the fixture values defined in conftest.py # tuples of '_index_factory,_series_name,_index_start,_index_end' DATE_RANGE = (date_range, "dti", datetime(2005, 1, 1), datetime(2005, 1, 10)) PERIOD_RANGE = (period_range, "pi", datetime(2005, 1, 1), datetime(2005, 1, 10)) TIMEDELTA_RANGE = (timedelta_range, "tdi", "1 day", "10 day") all_ts = pytest.mark.parametrize( "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, PERIOD_RANGE, TIMEDELTA_RANGE], ) @pytest.fixture def create_index(_index_factory): def _create_index(*args, **kwargs): """return the _index_factory created using the args, kwargs""" return _index_factory(*args, **kwargs) return _create_index @pytest.mark.parametrize("freq", ["2D", "1H"]) @pytest.mark.parametrize( "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE] ) def test_asfreq(series_and_frame, freq, create_index): obj = series_and_frame result = obj.resample(freq).asfreq() new_index = create_index(obj.index[0], obj.index[-1], freq=freq) expected = obj.reindex(new_index) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize( "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE] ) def test_asfreq_fill_value(series, create_index): # test for fill value during resampling, issue 3715 s = series result = s.resample("1H").asfreq() new_index = create_index(s.index[0], s.index[-1], freq="1H") expected = s.reindex(new_index) tm.assert_series_equal(result, expected) frame = s.to_frame("value") frame.iloc[1] = None result = frame.resample("1H").asfreq(fill_value=4.0) new_index = create_index(frame.index[0], frame.index[-1], freq="1H") expected = frame.reindex(new_index, fill_value=4.0) tm.assert_frame_equal(result, expected) @all_ts def test_resample_interpolate(frame): # # 12925 df = frame tm.assert_frame_equal( df.resample("1T").asfreq().interpolate(), df.resample("1T").interpolate() ) def test_raises_on_non_datetimelike_index(): # this is a non datetimelike index xp = DataFrame() msg = ( "Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, " "but got an instance of 'Index'" ) with pytest.raises(TypeError, match=msg): xp.resample("A").mean() @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) def test_resample_empty_series(freq, empty_series_dti, resample_method): # GH12771 & GH12868 if resample_method == "ohlc": pytest.skip("need to test for ohlc from GH13083") s = empty_series_dti result = getattr(s.resample(freq), resample_method)() expected = s.copy() expected.index = _asfreq_compat(s.index, freq) tm.assert_index_equal(result.index, expected.index) assert result.index.freq == expected.index.freq tm.assert_series_equal(result, expected, check_dtype=False) @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) def test_resample_nat_index_series(request, freq, series, resample_method): # GH39227 if freq == "M": request.node.add_marker(pytest.mark.xfail(reason="Don't know why this fails")) s = series.copy() s.index = PeriodIndex([NaT] * len(s), freq=freq) result = getattr(s.resample(freq), resample_method)() if resample_method == "ohlc": expected = DataFrame( [], index=s.index[:0].copy(), columns=["open", "high", "low", "close"] ) tm.assert_frame_equal(result, expected, check_dtype=False) else: expected = s[:0].copy() tm.assert_series_equal(result, expected, check_dtype=False) tm.assert_index_equal(result.index, expected.index) assert result.index.freq == expected.index.freq @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) @pytest.mark.parametrize("resample_method", ["count", "size"]) def test_resample_count_empty_series(freq, empty_series_dti, resample_method): # GH28427 result = getattr(empty_series_dti.resample(freq), resample_method)() index = _asfreq_compat(empty_series_dti.index, freq) expected = Series([], dtype="int64", index=index, name=empty_series_dti.name) tm.assert_series_equal(result, expected) @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) def test_resample_empty_dataframe(empty_frame_dti, freq, resample_method): # GH13212 df = empty_frame_dti # count retains dimensions too result = getattr(df.resample(freq), resample_method)() if resample_method != "size": expected = df.copy() else: # GH14962 expected = Series([], dtype=object) expected.index = _asfreq_compat(df.index, freq) tm.assert_index_equal(result.index, expected.index) assert result.index.freq == expected.index.freq tm.assert_almost_equal(result, expected, check_dtype=False) # test size for GH13212 (currently stays as df) @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) def test_resample_count_empty_dataframe(freq, empty_frame_dti): # GH28427 empty_frame_dti["a"] = [] result = empty_frame_dti.resample(freq).count() index = _asfreq_compat(empty_frame_dti.index, freq) expected = DataFrame({"a": []}, dtype="int64", index=index) tm.assert_frame_equal(result, expected) @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) def test_resample_size_empty_dataframe(freq, empty_frame_dti): # GH28427 empty_frame_dti["a"] = [] result = empty_frame_dti.resample(freq).size() index = _asfreq_compat(empty_frame_dti.index, freq) expected = Series([], dtype="int64", index=index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("index", tm.all_timeseries_index_generator(0)) @pytest.mark.parametrize("dtype", [float, int, object, "datetime64[ns]"]) def test_resample_empty_dtypes(index, dtype, resample_method): # Empty series were sometimes causing a segfault (for the functions # with Cython bounds-checking disabled) or an IndexError. We just run # them to ensure they no longer do. (GH #10228) empty_series_dti = Series([], index, dtype) try: getattr(empty_series_dti.resample("d"), resample_method)() except DataError: # Ignore these since some combinations are invalid # (ex: doing mean with dtype of np.object_) pass @all_ts def test_apply_to_empty_series(empty_series_dti): # GH 14313 s = empty_series_dti for freq in ["M", "D", "H"]: result = s.resample(freq).apply(lambda x: 1) expected = s.resample(freq).apply(np.sum) tm.assert_series_equal(result, expected, check_dtype=False) @all_ts def test_resampler_is_iterable(series): # GH 15314 freq = "H" tg = Grouper(freq=freq, convention="start") grouped = series.groupby(tg) resampled = series.resample(freq) for (rk, rv), (gk, gv) in zip(resampled, grouped): assert rk == gk tm.assert_series_equal(rv, gv) @all_ts def test_resample_quantile(series): # GH 15023 s = series q = 0.75 freq = "H" result = s.resample(freq).quantile(q) expected = s.resample(freq).agg(lambda x: x.quantile(q)).rename(s.name) tm.assert_series_equal(result, expected)