import numpy as np import pytest from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( DatetimeIndex, Series, Timestamp, date_range, isna, notna, offsets, ) import pandas._testing as tm class TestSeriesAsof: def test_asof_nanosecond_index_access(self): ts = Timestamp("20130101").value dti = DatetimeIndex([ts + 50 + i for i in range(100)]) ser = Series(np.random.randn(100), index=dti) first_value = ser.asof(ser.index[0]) # this used to not work bc parsing was done by dateutil that didn't # handle nanoseconds assert first_value == ser["2013-01-01 00:00:00.000000050+0000"] expected_ts = np.datetime64("2013-01-01 00:00:00.000000050", "ns") assert first_value == ser[Timestamp(expected_ts)] def test_basic(self): # array or list or dates N = 50 rng = date_range("1/1/1990", periods=N, freq="53s") ts = Series(np.random.randn(N), index=rng) ts.iloc[15:30] = np.nan dates = date_range("1/1/1990", periods=N * 3, freq="25s") result = ts.asof(dates) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] mask = (result.index >= lb) & (result.index < ub) rs = result[mask] assert (rs == ts[lb]).all() val = result[result.index[result.index >= ub][0]] assert ts[ub] == val def test_scalar(self): N = 30 rng = date_range("1/1/1990", periods=N, freq="53s") ts = Series(np.arange(N), index=rng) ts.iloc[5:10] = np.NaN ts.iloc[15:20] = np.NaN val1 = ts.asof(ts.index[7]) val2 = ts.asof(ts.index[19]) assert val1 == ts[4] assert val2 == ts[14] # accepts strings val1 = ts.asof(str(ts.index[7])) assert val1 == ts[4] # in there result = ts.asof(ts.index[3]) assert result == ts[3] # no as of value d = ts.index[0] - offsets.BDay() assert np.isnan(ts.asof(d)) def test_with_nan(self): # basic asof test rng = date_range("1/1/2000", "1/2/2000", freq="4h") s = Series(np.arange(len(rng)), index=rng) r = s.resample("2h").mean() result = r.asof(r.index) expected = Series( [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6.0], index=date_range("1/1/2000", "1/2/2000", freq="2h"), ) tm.assert_series_equal(result, expected) r.iloc[3:5] = np.nan result = r.asof(r.index) expected = Series( [0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 5, 5, 6.0], index=date_range("1/1/2000", "1/2/2000", freq="2h"), ) tm.assert_series_equal(result, expected) r.iloc[-3:] = np.nan result = r.asof(r.index) expected = Series( [0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 4, 4, 4.0], index=date_range("1/1/2000", "1/2/2000", freq="2h"), ) tm.assert_series_equal(result, expected) def test_periodindex(self): from pandas import ( PeriodIndex, period_range, ) # array or list or dates N = 50 rng = period_range("1/1/1990", periods=N, freq="H") ts = Series(np.random.randn(N), index=rng) ts.iloc[15:30] = np.nan dates = date_range("1/1/1990", periods=N * 3, freq="37min") result = ts.asof(dates) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] pix = PeriodIndex(result.index.values, freq="H") mask = (pix >= lb) & (pix < ub) rs = result[mask] assert (rs == ts[lb]).all() ts.iloc[5:10] = np.nan ts.iloc[15:20] = np.nan val1 = ts.asof(ts.index[7]) val2 = ts.asof(ts.index[19]) assert val1 == ts[4] assert val2 == ts[14] # accepts strings val1 = ts.asof(str(ts.index[7])) assert val1 == ts[4] # in there assert ts.asof(ts.index[3]) == ts[3] # no as of value d = ts.index[0].to_timestamp() - offsets.BDay() assert isna(ts.asof(d)) # Mismatched freq msg = "Input has different freq" with pytest.raises(IncompatibleFrequency, match=msg): ts.asof(rng.asfreq("D")) def test_errors(self): s = Series( [1, 2, 3], index=[Timestamp("20130101"), Timestamp("20130103"), Timestamp("20130102")], ) # non-monotonic assert not s.index.is_monotonic with pytest.raises(ValueError, match="requires a sorted index"): s.asof(s.index[0]) # subset with Series N = 10 rng = date_range("1/1/1990", periods=N, freq="53s") s = Series(np.random.randn(N), index=rng) with pytest.raises(ValueError, match="not valid for Series"): s.asof(s.index[0], subset="foo") def test_all_nans(self): # GH 15713 # series is all nans # testing non-default indexes N = 50 rng = date_range("1/1/1990", periods=N, freq="53s") dates = date_range("1/1/1990", periods=N * 3, freq="25s") result = Series(np.nan, index=rng).asof(dates) expected = Series(np.nan, index=dates) tm.assert_series_equal(result, expected) # testing scalar input date = date_range("1/1/1990", periods=N * 3, freq="25s")[0] result = Series(np.nan, index=rng).asof(date) assert isna(result) # test name is propagated result = Series(np.nan, index=[1, 2, 3, 4], name="test").asof([4, 5]) expected = Series(np.nan, index=[4, 5], name="test") tm.assert_series_equal(result, expected)