""" Note: for naming purposes, most tests are title with as e.g. "test_nlargest_foo" but are implicitly also testing nsmallest_foo. """ from itertools import product import numpy as np import pytest import pandas as pd from pandas import Series import pandas._testing as tm main_dtypes = [ "datetime", "datetimetz", "timedelta", "int8", "int16", "int32", "int64", "float32", "float64", "uint8", "uint16", "uint32", "uint64", ] @pytest.fixture def s_main_dtypes(): """ A DataFrame with many dtypes * datetime * datetimetz * timedelta * [u]int{8,16,32,64} * float{32,64} The columns are the name of the dtype. """ df = pd.DataFrame( { "datetime": pd.to_datetime(["2003", "2002", "2001", "2002", "2005"]), "datetimetz": pd.to_datetime( ["2003", "2002", "2001", "2002", "2005"] ).tz_localize("US/Eastern"), "timedelta": pd.to_timedelta(["3d", "2d", "1d", "2d", "5d"]), } ) for dtype in [ "int8", "int16", "int32", "int64", "float32", "float64", "uint8", "uint16", "uint32", "uint64", ]: df[dtype] = Series([3, 2, 1, 2, 5], dtype=dtype) return df @pytest.fixture(params=main_dtypes) def s_main_dtypes_split(request, s_main_dtypes): """Each series in s_main_dtypes.""" return s_main_dtypes[request.param] def assert_check_nselect_boundary(vals, dtype, method): # helper function for 'test_boundary_{dtype}' tests ser = Series(vals, dtype=dtype) result = getattr(ser, method)(3) expected_idxr = [0, 1, 2] if method == "nsmallest" else [3, 2, 1] expected = ser.loc[expected_idxr] tm.assert_series_equal(result, expected) class TestSeriesNLargestNSmallest: @pytest.mark.parametrize( "r", [ Series([3.0, 2, 1, 2, "5"], dtype="object"), Series([3.0, 2, 1, 2, 5], dtype="object"), # not supported on some archs # Series([3., 2, 1, 2, 5], dtype='complex256'), Series([3.0, 2, 1, 2, 5], dtype="complex128"), Series(list("abcde")), Series(list("abcde"), dtype="category"), ], ) def test_nlargest_error(self, r): dt = r.dtype msg = f"Cannot use method 'n(largest|smallest)' with dtype {dt}" args = 2, len(r), 0, -1 methods = r.nlargest, r.nsmallest for method, arg in product(methods, args): with pytest.raises(TypeError, match=msg): method(arg) def test_nsmallest_nlargest(self, s_main_dtypes_split): # float, int, datetime64 (use i8), timedelts64 (same), # object that are numbers, object that are strings ser = s_main_dtypes_split tm.assert_series_equal(ser.nsmallest(2), ser.iloc[[2, 1]]) tm.assert_series_equal(ser.nsmallest(2, keep="last"), ser.iloc[[2, 3]]) empty = ser.iloc[0:0] tm.assert_series_equal(ser.nsmallest(0), empty) tm.assert_series_equal(ser.nsmallest(-1), empty) tm.assert_series_equal(ser.nlargest(0), empty) tm.assert_series_equal(ser.nlargest(-1), empty) tm.assert_series_equal(ser.nsmallest(len(ser)), ser.sort_values()) tm.assert_series_equal(ser.nsmallest(len(ser) + 1), ser.sort_values()) tm.assert_series_equal(ser.nlargest(len(ser)), ser.iloc[[4, 0, 1, 3, 2]]) tm.assert_series_equal(ser.nlargest(len(ser) + 1), ser.iloc[[4, 0, 1, 3, 2]]) def test_nlargest_misc(self): ser = Series([3.0, np.nan, 1, 2, 5]) result = ser.nlargest() expected = ser.iloc[[4, 0, 3, 2, 1]] tm.assert_series_equal(result, expected) result = ser.nsmallest() expected = ser.iloc[[2, 3, 0, 4, 1]] tm.assert_series_equal(result, expected) msg = 'keep must be either "first", "last"' with pytest.raises(ValueError, match=msg): ser.nsmallest(keep="invalid") with pytest.raises(ValueError, match=msg): ser.nlargest(keep="invalid") # GH#15297 ser = Series([1] * 5, index=[1, 2, 3, 4, 5]) expected_first = Series([1] * 3, index=[1, 2, 3]) expected_last = Series([1] * 3, index=[5, 4, 3]) result = ser.nsmallest(3) tm.assert_series_equal(result, expected_first) result = ser.nsmallest(3, keep="last") tm.assert_series_equal(result, expected_last) result = ser.nlargest(3) tm.assert_series_equal(result, expected_first) result = ser.nlargest(3, keep="last") tm.assert_series_equal(result, expected_last) @pytest.mark.parametrize("n", range(1, 5)) def test_nlargest_n(self, n): # GH 13412 ser = Series([1, 4, 3, 2], index=[0, 0, 1, 1]) result = ser.nlargest(n) expected = ser.sort_values(ascending=False).head(n) tm.assert_series_equal(result, expected) result = ser.nsmallest(n) expected = ser.sort_values().head(n) tm.assert_series_equal(result, expected) def test_nlargest_boundary_integer(self, nselect_method, any_int_numpy_dtype): # GH#21426 dtype_info = np.iinfo(any_int_numpy_dtype) min_val, max_val = dtype_info.min, dtype_info.max vals = [min_val, min_val + 1, max_val - 1, max_val] assert_check_nselect_boundary(vals, any_int_numpy_dtype, nselect_method) def test_nlargest_boundary_float(self, nselect_method, float_numpy_dtype): # GH#21426 dtype_info = np.finfo(float_numpy_dtype) min_val, max_val = dtype_info.min, dtype_info.max min_2nd, max_2nd = np.nextafter([min_val, max_val], 0, dtype=float_numpy_dtype) vals = [min_val, min_2nd, max_2nd, max_val] assert_check_nselect_boundary(vals, float_numpy_dtype, nselect_method) @pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"]) def test_nlargest_boundary_datetimelike(self, nselect_method, dtype): # GH#21426 # use int64 bounds and +1 to min_val since true minimum is NaT # (include min_val/NaT at end to maintain same expected_idxr) dtype_info = np.iinfo("int64") min_val, max_val = dtype_info.min, dtype_info.max vals = [min_val + 1, min_val + 2, max_val - 1, max_val, min_val] assert_check_nselect_boundary(vals, dtype, nselect_method) def test_nlargest_duplicate_keep_all_ties(self): # see GH#16818 ser = Series([10, 9, 8, 7, 7, 7, 7, 6]) result = ser.nlargest(4, keep="all") expected = Series([10, 9, 8, 7, 7, 7, 7]) tm.assert_series_equal(result, expected) result = ser.nsmallest(2, keep="all") expected = Series([6, 7, 7, 7, 7], index=[7, 3, 4, 5, 6]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data,expected", [([True, False], [True]), ([True, False, True, True], [True])] ) def test_nlargest_boolean(self, data, expected): # GH#26154 : ensure True > False ser = Series(data) result = ser.nlargest(1) expected = Series(expected) tm.assert_series_equal(result, expected) def test_nlargest_nullable(self, any_numeric_ea_dtype): # GH#42816 dtype = any_numeric_ea_dtype arr = np.random.randn(10).astype(dtype.lower(), copy=False) ser = Series(arr.copy(), dtype=dtype) ser[1] = pd.NA result = ser.nlargest(5) expected = ( Series(np.delete(arr, 1), index=ser.index.delete(1)) .nlargest(5) .astype(dtype) ) tm.assert_series_equal(result, expected)