from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, RangeIndex, Series, date_range, ) import pandas._testing as tm class TestResetIndex: def test_reset_index_dti_round_trip(self): dti = date_range(start="1/1/2001", end="6/1/2001", freq="D")._with_freq(None) d1 = DataFrame({"v": np.random.rand(len(dti))}, index=dti) d2 = d1.reset_index() assert d2.dtypes[0] == np.dtype("M8[ns]") d3 = d2.set_index("index") tm.assert_frame_equal(d1, d3, check_names=False) # GH#2329 stamp = datetime(2012, 11, 22) df = DataFrame([[stamp, 12.1]], columns=["Date", "Value"]) df = df.set_index("Date") assert df.index[0] == stamp assert df.reset_index()["Date"][0] == stamp def test_reset_index(self): df = tm.makeDataFrame()[:5] ser = df.stack() ser.index.names = ["hash", "category"] ser.name = "value" df = ser.reset_index() assert "value" in df df = ser.reset_index(name="value2") assert "value2" in df # check inplace s = ser.reset_index(drop=True) s2 = ser return_value = s2.reset_index(drop=True, inplace=True) assert return_value is None tm.assert_series_equal(s, s2) # level index = MultiIndex( levels=[["bar"], ["one", "two", "three"], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], ) s = Series(np.random.randn(6), index=index) rs = s.reset_index(level=1) assert len(rs.columns) == 2 rs = s.reset_index(level=[0, 2], drop=True) tm.assert_index_equal(rs.index, Index(index.get_level_values(1))) assert isinstance(rs, Series) def test_reset_index_name(self): s = Series([1, 2, 3], index=Index(range(3), name="x")) assert s.reset_index().index.name is None assert s.reset_index(drop=True).index.name is None def test_reset_index_level(self): df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"]) for levels in ["A", "B"], [0, 1]: # With MultiIndex s = df.set_index(["A", "B"])["C"] result = s.reset_index(level=levels[0]) tm.assert_frame_equal(result, df.set_index("B")) result = s.reset_index(level=levels[:1]) tm.assert_frame_equal(result, df.set_index("B")) result = s.reset_index(level=levels) tm.assert_frame_equal(result, df) result = df.set_index(["A", "B"]).reset_index(level=levels, drop=True) tm.assert_frame_equal(result, df[["C"]]) with pytest.raises(KeyError, match="Level E "): s.reset_index(level=["A", "E"]) # With single-level Index s = df.set_index("A")["B"] result = s.reset_index(level=levels[0]) tm.assert_frame_equal(result, df[["A", "B"]]) result = s.reset_index(level=levels[:1]) tm.assert_frame_equal(result, df[["A", "B"]]) result = s.reset_index(level=levels[0], drop=True) tm.assert_series_equal(result, df["B"]) with pytest.raises(IndexError, match="Too many levels"): s.reset_index(level=[0, 1, 2]) # Check that .reset_index([],drop=True) doesn't fail result = Series(range(4)).reset_index([], drop=True) expected = Series(range(4)) tm.assert_series_equal(result, expected) def test_reset_index_range(self): # GH 12071 s = Series(range(2), name="A", dtype="int64") series_result = s.reset_index() assert isinstance(series_result.index, RangeIndex) series_expected = DataFrame( [[0, 0], [1, 1]], columns=["index", "A"], index=RangeIndex(stop=2) ) tm.assert_frame_equal(series_result, series_expected) def test_reset_index_drop_errors(self): # GH 20925 # KeyError raised for series index when passed level name is missing s = Series(range(4)) with pytest.raises(KeyError, match="does not match index name"): s.reset_index("wrong", drop=True) with pytest.raises(KeyError, match="does not match index name"): s.reset_index("wrong") # KeyError raised for series when level to be dropped is missing s = Series(range(4), index=MultiIndex.from_product([[1, 2]] * 2)) with pytest.raises(KeyError, match="not found"): s.reset_index("wrong", drop=True) def test_reset_index_with_drop(self, series_with_multilevel_index): ser = series_with_multilevel_index deleveled = ser.reset_index() assert isinstance(deleveled, DataFrame) assert len(deleveled.columns) == len(ser.index.levels) + 1 assert deleveled.index.name == ser.index.name deleveled = ser.reset_index(drop=True) assert isinstance(deleveled, Series) assert deleveled.index.name == ser.index.name def test_drop_pos_args_deprecation(self): # https://github.com/pandas-dev/pandas/issues/41485 ser = Series([1, 2, 3], index=Index([1, 2, 3], name="a")) msg = ( r"In a future version of pandas all arguments of Series\.reset_index " r"except for the argument 'level' will be keyword-only" ) with tm.assert_produces_warning(FutureWarning, match=msg): result = ser.reset_index("a", False) expected = DataFrame({"a": [1, 2, 3], 0: [1, 2, 3]}) tm.assert_frame_equal(result, expected) def test_reset_index_inplace_and_drop_ignore_name(self): # GH#44575 ser = Series(range(2), name="old") ser.reset_index(name="new", drop=True, inplace=True) expected = Series(range(2), name="old") tm.assert_series_equal(ser, expected) @pytest.mark.parametrize( "array, dtype", [ (["a", "b"], object), ( pd.period_range("12-1-2000", periods=2, freq="Q-DEC"), pd.PeriodDtype(freq="Q-DEC"), ), ], ) def test_reset_index_dtypes_on_empty_series_with_multiindex(array, dtype): # GH 19602 - Preserve dtype on empty Series with MultiIndex idx = MultiIndex.from_product([[0, 1], [0.5, 1.0], array]) result = Series(dtype=object, index=idx)[:0].reset_index().dtypes expected = Series( {"level_0": np.int64, "level_1": np.float64, "level_2": dtype, 0: object} ) tm.assert_series_equal(result, expected)