from datetime import ( time, timedelta, ) import numpy as np import pytest from pandas.errors import OutOfBoundsTimedelta import pandas as pd from pandas import ( Series, TimedeltaIndex, isna, to_timedelta, ) import pandas._testing as tm from pandas.core.arrays import TimedeltaArray class TestTimedeltas: @pytest.mark.parametrize("readonly", [True, False]) def test_to_timedelta_readonly(self, readonly): # GH#34857 arr = np.array([], dtype=object) if readonly: arr.setflags(write=False) result = to_timedelta(arr) expected = to_timedelta([]) tm.assert_index_equal(result, expected) def test_to_timedelta_null(self): result = to_timedelta(["", ""]) assert isna(result).all() def test_to_timedelta_same_np_timedelta64(self): # pass thru result = to_timedelta(np.array([np.timedelta64(1, "s")])) expected = pd.Index(np.array([np.timedelta64(1, "s")])) tm.assert_index_equal(result, expected) def test_to_timedelta_series(self): # Series expected = Series([timedelta(days=1), timedelta(days=1, seconds=1)]) result = to_timedelta(Series(["1d", "1days 00:00:01"])) tm.assert_series_equal(result, expected) def test_to_timedelta_units(self): # with units result = TimedeltaIndex( [np.timedelta64(0, "ns"), np.timedelta64(10, "s").astype("m8[ns]")] ) expected = to_timedelta([0, 10], unit="s") tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "dtype, unit", [ ["int64", "s"], ["int64", "m"], ["int64", "h"], ["timedelta64[s]", "s"], ["timedelta64[D]", "D"], ], ) def test_to_timedelta_units_dtypes(self, dtype, unit): # arrays of various dtypes arr = np.array([1] * 5, dtype=dtype) result = to_timedelta(arr, unit=unit) expected = TimedeltaIndex([np.timedelta64(1, unit)] * 5) tm.assert_index_equal(result, expected) def test_to_timedelta_oob_non_nano(self): arr = np.array([pd.NaT.value + 1], dtype="timedelta64[s]") msg = r"Out of bounds for nanosecond timedelta64\[s\] -9223372036854775807" with pytest.raises(OutOfBoundsTimedelta, match=msg): to_timedelta(arr) with pytest.raises(OutOfBoundsTimedelta, match=msg): TimedeltaIndex(arr) with pytest.raises(OutOfBoundsTimedelta, match=msg): TimedeltaArray._from_sequence(arr) @pytest.mark.parametrize( "arg", [np.arange(10).reshape(2, 5), pd.DataFrame(np.arange(10).reshape(2, 5))] ) @pytest.mark.parametrize("errors", ["ignore", "raise", "coerce"]) def test_to_timedelta_dataframe(self, arg, errors): # GH 11776 with pytest.raises(TypeError, match="1-d array"): to_timedelta(arg, errors=errors) def test_to_timedelta_invalid_errors(self): # bad value for errors parameter msg = "errors must be one of" with pytest.raises(ValueError, match=msg): to_timedelta(["foo"], errors="never") @pytest.mark.parametrize("arg", [[1, 2], 1]) def test_to_timedelta_invalid_unit(self, arg): # these will error msg = "invalid unit abbreviation: foo" with pytest.raises(ValueError, match=msg): to_timedelta(arg, unit="foo") def test_to_timedelta_time(self): # time not supported ATM msg = ( "Value must be Timedelta, string, integer, float, timedelta or convertible" ) with pytest.raises(ValueError, match=msg): to_timedelta(time(second=1)) assert to_timedelta(time(second=1), errors="coerce") is pd.NaT def test_to_timedelta_bad_value(self): msg = "Could not convert 'foo' to NumPy timedelta" with pytest.raises(ValueError, match=msg): to_timedelta(["foo", "bar"]) def test_to_timedelta_bad_value_coerce(self): tm.assert_index_equal( TimedeltaIndex([pd.NaT, pd.NaT]), to_timedelta(["foo", "bar"], errors="coerce"), ) tm.assert_index_equal( TimedeltaIndex(["1 day", pd.NaT, "1 min"]), to_timedelta(["1 day", "bar", "1 min"], errors="coerce"), ) def test_to_timedelta_invalid_errors_ignore(self): # gh-13613: these should not error because errors='ignore' invalid_data = "apple" assert invalid_data == to_timedelta(invalid_data, errors="ignore") invalid_data = ["apple", "1 days"] tm.assert_numpy_array_equal( np.array(invalid_data, dtype=object), to_timedelta(invalid_data, errors="ignore"), ) invalid_data = pd.Index(["apple", "1 days"]) tm.assert_index_equal(invalid_data, to_timedelta(invalid_data, errors="ignore")) invalid_data = Series(["apple", "1 days"]) tm.assert_series_equal( invalid_data, to_timedelta(invalid_data, errors="ignore") ) @pytest.mark.parametrize( "val, warning", [ ("1M", FutureWarning), ("1 M", FutureWarning), ("1Y", FutureWarning), ("1 Y", FutureWarning), ("1y", FutureWarning), ("1 y", FutureWarning), ("1m", None), ("1 m", None), ("1 day", None), ("2day", None), ], ) def test_unambiguous_timedelta_values(self, val, warning): # GH36666 Deprecate use of strings denoting units with 'M', 'Y', 'm' or 'y' # in pd.to_timedelta msg = "Units 'M', 'Y' and 'y' do not represent unambiguous timedelta" with tm.assert_produces_warning(warning, match=msg, check_stacklevel=False): to_timedelta(val) def test_to_timedelta_via_apply(self): # GH 5458 expected = Series([np.timedelta64(1, "s")]) result = Series(["00:00:01"]).apply(to_timedelta) tm.assert_series_equal(result, expected) result = Series([to_timedelta("00:00:01")]) tm.assert_series_equal(result, expected) def test_to_timedelta_inference_without_warning(self): # GH#41731 inference produces a warning in the Series constructor, # but _not_ in to_timedelta vals = ["00:00:01", pd.NaT] with tm.assert_produces_warning(None): result = to_timedelta(vals) expected = TimedeltaIndex([pd.Timedelta(seconds=1), pd.NaT]) tm.assert_index_equal(result, expected) def test_to_timedelta_on_missing_values(self): # GH5438 timedelta_NaT = np.timedelta64("NaT") actual = to_timedelta(Series(["00:00:01", np.nan])) expected = Series( [np.timedelta64(1000000000, "ns"), timedelta_NaT], dtype="