import itertools import numpy as np import pytest from pandas import ( DataFrame, Series, notna, ) def create_series(): return [ Series(dtype=np.float64, name="a"), Series([np.nan] * 5), Series([1.0] * 5), Series(range(5, 0, -1)), Series(range(5)), Series([np.nan, 1.0, np.nan, 1.0, 1.0]), Series([np.nan, 1.0, np.nan, 2.0, 3.0]), Series([np.nan, 1.0, np.nan, 3.0, 2.0]), ] def create_dataframes(): return [ DataFrame(columns=["a", "a"]), DataFrame(np.arange(15).reshape((5, 3)), columns=["a", "a", 99]), ] + [DataFrame(s) for s in create_series()] def is_constant(x): values = x.values.ravel("K") return len(set(values[notna(values)])) == 1 @pytest.fixture( params=( obj for obj in itertools.chain(create_series(), create_dataframes()) if is_constant(obj) ), scope="module", ) def consistent_data(request): return request.param @pytest.fixture(params=create_series()) def series_data(request): return request.param @pytest.fixture(params=itertools.chain(create_series(), create_dataframes())) def all_data(request): """ Test: - Empty Series / DataFrame - All NaN - All consistent value - Monotonically decreasing - Monotonically increasing - Monotonically consistent with NaNs - Monotonically increasing with NaNs - Monotonically decreasing with NaNs """ return request.param @pytest.fixture(params=[(1, 0), (5, 1)]) def rolling_consistency_cases(request): """window, min_periods""" return request.param @pytest.fixture(params=[0, 2]) def min_periods(request): return request.param