import warnings import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, date_range, ) import pandas._testing as tm from pandas.core.algorithms import safe_sort def test_rolling_cov(series): A = series B = A + np.random.randn(len(A)) result = A.rolling(window=50, min_periods=25).cov(B) tm.assert_almost_equal(result[-1], np.cov(A[-50:], B[-50:])[0, 1]) def test_rolling_corr(series): A = series B = A + np.random.randn(len(A)) result = A.rolling(window=50, min_periods=25).corr(B) tm.assert_almost_equal(result[-1], np.corrcoef(A[-50:], B[-50:])[0, 1]) # test for correct bias correction a = tm.makeTimeSeries() b = tm.makeTimeSeries() a[:5] = np.nan b[:10] = np.nan result = a.rolling(window=len(a), min_periods=1).corr(b) tm.assert_almost_equal(result[-1], a.corr(b)) @pytest.mark.parametrize("func", ["cov", "corr"]) def test_rolling_pairwise_cov_corr(func, frame): result = getattr(frame.rolling(window=10, min_periods=5), func)() result = result.loc[(slice(None), 1), 5] result.index = result.index.droplevel(1) expected = getattr(frame[1].rolling(window=10, min_periods=5), func)(frame[5]) tm.assert_series_equal(result, expected, check_names=False) @pytest.mark.parametrize("method", ["corr", "cov"]) def test_flex_binary_frame(method, frame): series = frame[1] res = getattr(series.rolling(window=10), method)(frame) res2 = getattr(frame.rolling(window=10), method)(series) exp = frame.apply(lambda x: getattr(series.rolling(window=10), method)(x)) tm.assert_frame_equal(res, exp) tm.assert_frame_equal(res2, exp) frame2 = frame.copy() frame2.values[:] = np.random.randn(*frame2.shape) res3 = getattr(frame.rolling(window=10), method)(frame2) exp = DataFrame( {k: getattr(frame[k].rolling(window=10), method)(frame2[k]) for k in frame} ) tm.assert_frame_equal(res3, exp) @pytest.mark.parametrize("window", range(7)) def test_rolling_corr_with_zero_variance(window): # GH 18430 s = Series(np.zeros(20)) other = Series(np.arange(20)) assert s.rolling(window=window).corr(other=other).isna().all() def test_corr_sanity(): # GH 3155 df = DataFrame( np.array( [ [0.87024726, 0.18505595], [0.64355431, 0.3091617], [0.92372966, 0.50552513], [0.00203756, 0.04520709], [0.84780328, 0.33394331], [0.78369152, 0.63919667], ] ) ) res = df[0].rolling(5, center=True).corr(df[1]) assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) df = DataFrame(np.random.rand(30, 2)) res = df[0].rolling(5, center=True).corr(df[1]) assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) def test_rolling_cov_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2) expected = Series([None, None, 2.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2a) tm.assert_series_equal(result, expected) def test_rolling_corr_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2) expected = Series([None, None, 1.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2a) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "f", [ lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)), lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)), ], ) def test_rolling_functions_window_non_shrinkage_binary(f): # corr/cov return a MI DataFrame df = DataFrame( [[1, 5], [3, 2], [3, 9], [-1, 0]], columns=Index(["A", "B"], name="foo"), index=Index(range(4), name="bar"), ) df_expected = DataFrame( columns=Index(["A", "B"], name="foo"), index=MultiIndex.from_product([df.index, df.columns], names=["bar", "foo"]), dtype="float64", ) df_result = f(df) tm.assert_frame_equal(df_result, df_expected) @pytest.mark.parametrize( "f", [ lambda x: (x.rolling(window=10, min_periods=5).cov(x, pairwise=True)), lambda x: (x.rolling(window=10, min_periods=5).corr(x, pairwise=True)), ], ) def test_moment_functions_zero_length_pairwise(f): df1 = DataFrame() df2 = DataFrame(columns=Index(["a"], name="foo"), index=Index([], name="bar")) df2["a"] = df2["a"].astype("float64") df1_expected = DataFrame( index=MultiIndex.from_product([df1.index, df1.columns]), columns=Index([]) ) df2_expected = DataFrame( index=MultiIndex.from_product([df2.index, df2.columns], names=["bar", "foo"]), columns=Index(["a"], name="foo"), dtype="float64", ) df1_result = f(df1) tm.assert_frame_equal(df1_result, df1_expected) df2_result = f(df2) tm.assert_frame_equal(df2_result, df2_expected) class TestPairwise: # GH 7738 @pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()]) def test_no_flex(self, pairwise_frames, pairwise_target_frame, f): # DataFrame methods (which do not call flex_binary_moment()) result = f(pairwise_frames) tm.assert_index_equal(result.index, pairwise_frames.columns) tm.assert_index_equal(result.columns, pairwise_frames.columns) expected = f(pairwise_target_frame) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize( "f", [ lambda x: x.expanding().cov(pairwise=True), lambda x: x.expanding().corr(pairwise=True), lambda x: x.rolling(window=3).cov(pairwise=True), lambda x: x.rolling(window=3).corr(pairwise=True), lambda x: x.ewm(com=3).cov(pairwise=True), lambda x: x.ewm(com=3).corr(pairwise=True), ], ) def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f): # DataFrame with itself, pairwise=True # note that we may construct the 1st level of the MI # in a non-monotonic way, so compare accordingly result = f(pairwise_frames) tm.assert_index_equal( result.index.levels[0], pairwise_frames.index, check_names=False ) tm.assert_numpy_array_equal( safe_sort(result.index.levels[1]), safe_sort(pairwise_frames.columns.unique()), ) tm.assert_index_equal(result.columns, pairwise_frames.columns) expected = f(pairwise_target_frame) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize( "f", [ lambda x: x.expanding().cov(pairwise=False), lambda x: x.expanding().corr(pairwise=False), lambda x: x.rolling(window=3).cov(pairwise=False), lambda x: x.rolling(window=3).corr(pairwise=False), lambda x: x.ewm(com=3).cov(pairwise=False), lambda x: x.ewm(com=3).corr(pairwise=False), ], ) def test_no_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f): # DataFrame with itself, pairwise=False result = f(pairwise_frames) tm.assert_index_equal(result.index, pairwise_frames.index) tm.assert_index_equal(result.columns, pairwise_frames.columns) expected = f(pairwise_target_frame) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize( "f", [ lambda x, y: x.expanding().cov(y, pairwise=True), lambda x, y: x.expanding().corr(y, pairwise=True), lambda x, y: x.rolling(window=3).cov(y, pairwise=True), lambda x, y: x.rolling(window=3).corr(y, pairwise=True), lambda x, y: x.ewm(com=3).cov(y, pairwise=True), lambda x, y: x.ewm(com=3).corr(y, pairwise=True), ], ) def test_pairwise_with_other( self, pairwise_frames, pairwise_target_frame, pairwise_other_frame, f ): # DataFrame with another DataFrame, pairwise=True result = f(pairwise_frames, pairwise_other_frame) tm.assert_index_equal( result.index.levels[0], pairwise_frames.index, check_names=False ) tm.assert_numpy_array_equal( safe_sort(result.index.levels[1]), safe_sort(pairwise_other_frame.columns.unique()), ) expected = f(pairwise_target_frame, pairwise_other_frame) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize( "f", [ lambda x, y: x.expanding().cov(y, pairwise=False), lambda x, y: x.expanding().corr(y, pairwise=False), lambda x, y: x.rolling(window=3).cov(y, pairwise=False), lambda x, y: x.rolling(window=3).corr(y, pairwise=False), lambda x, y: x.ewm(com=3).cov(y, pairwise=False), lambda x, y: x.ewm(com=3).corr(y, pairwise=False), ], ) def test_no_pairwise_with_other(self, pairwise_frames, pairwise_other_frame, f): # DataFrame with another DataFrame, pairwise=False result = ( f(pairwise_frames, pairwise_other_frame) if pairwise_frames.columns.is_unique else None ) if result is not None: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) # we can have int and str columns expected_index = pairwise_frames.index.union(pairwise_other_frame.index) expected_columns = pairwise_frames.columns.union( pairwise_other_frame.columns ) tm.assert_index_equal(result.index, expected_index) tm.assert_index_equal(result.columns, expected_columns) else: with pytest.raises(ValueError, match="'arg1' columns are not unique"): f(pairwise_frames, pairwise_other_frame) with pytest.raises(ValueError, match="'arg2' columns are not unique"): f(pairwise_other_frame, pairwise_frames) @pytest.mark.parametrize( "f", [ lambda x, y: x.expanding().cov(y), lambda x, y: x.expanding().corr(y), lambda x, y: x.rolling(window=3).cov(y), lambda x, y: x.rolling(window=3).corr(y), lambda x, y: x.ewm(com=3).cov(y), lambda x, y: x.ewm(com=3).corr(y), ], ) def test_pairwise_with_series(self, pairwise_frames, pairwise_target_frame, f): # DataFrame with a Series result = f(pairwise_frames, Series([1, 1, 3, 8])) tm.assert_index_equal(result.index, pairwise_frames.index) tm.assert_index_equal(result.columns, pairwise_frames.columns) expected = f(pairwise_target_frame, Series([1, 1, 3, 8])) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) result = f(Series([1, 1, 3, 8]), pairwise_frames) tm.assert_index_equal(result.index, pairwise_frames.index) tm.assert_index_equal(result.columns, pairwise_frames.columns) expected = f(Series([1, 1, 3, 8]), pairwise_target_frame) # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) def test_corr_freq_memory_error(self): # GH 31789 s = Series(range(5), index=date_range("2020", periods=5)) result = s.rolling("12H").corr(s) expected = Series([np.nan] * 5, index=date_range("2020", periods=5)) tm.assert_series_equal(result, expected) def test_cov_mulittindex(self): # GH 34440 columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")]) index = range(3) df = DataFrame(np.arange(24).reshape(3, 8), index=index, columns=columns) result = df.ewm(alpha=0.1).cov() index = MultiIndex.from_product([range(3), list("ab"), list("xy"), list("AB")]) columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")]) expected = DataFrame( np.vstack( ( np.full((8, 8), np.NaN), np.full((8, 8), 32.000000), np.full((8, 8), 63.881919), ) ), index=index, columns=columns, ) tm.assert_frame_equal(result, expected) def test_multindex_columns_pairwise_func(self): # GH 21157 columns = MultiIndex.from_arrays([["M", "N"], ["P", "Q"]], names=["a", "b"]) df = DataFrame(np.ones((5, 2)), columns=columns) result = df.rolling(3).corr() expected = DataFrame( np.nan, index=MultiIndex.from_arrays( [np.repeat(np.arange(5), 2), ["M", "N"] * 5, ["P", "Q"] * 5], names=[None, "a", "b"], ), columns=columns, ) tm.assert_frame_equal(result, expected)