""" Generic support for objects with full-featured Parameters and messaging. This file comes from the Param library (https://github.com/holoviz/param) but can be taken out of the param module and used on its own if desired, either alone (providing basic Parameter support) or with param's __init__.py (providing specialized Parameter types). """ import copy import re import sys import inspect import random import numbers import operator # Allow this file to be used standalone if desired, albeit without JSON serialization try: from . import serializer except ImportError: serializer = None from collections import defaultdict, namedtuple, OrderedDict from functools import partial, wraps, reduce from operator import itemgetter,attrgetter from types import FunctionType import logging from contextlib import contextmanager from logging import DEBUG, INFO, WARNING, ERROR, CRITICAL try: # In case the optional ipython module is unavailable from .ipython import ParamPager param_pager = ParamPager(metaclass=True) # Generates param description except: param_pager = None try: from inspect import getfullargspec except: from inspect import getargspec as getfullargspec # python2 basestring = basestring if sys.version_info[0]==2 else str # noqa: it is defined VERBOSE = INFO - 1 logging.addLevelName(VERBOSE, "VERBOSE") # Get the appropriate logging.Logger instance. If `logger` is None, a # logger named `"param"` will be instantiated. If `name` is set, a descendant # logger with the name ``"param."`` is returned (or # ``logger.name + "."``) logger = None def get_logger(name=None): if logger is None: root_logger = logging.getLogger('param') if not root_logger.handlers: root_logger.setLevel(logging.INFO) formatter = logging.Formatter( fmt='%(levelname)s:%(name)s: %(message)s') handler = logging.StreamHandler() handler.setFormatter(formatter) root_logger.addHandler(handler) else: root_logger = logger if name is None: return root_logger else: return logging.getLogger(root_logger.name + '.' + name) # Indicates whether warnings should be raised as errors, stopping # processing. warnings_as_exceptions = False docstring_signature = True # Add signature to class docstrings docstring_describe_params = True # Add parameter description to class # docstrings (requires ipython module) object_count = 0 warning_count = 0 class _Undefined: """ Dummy value to signal completely undefined values rather than simple None values. """ @contextmanager def logging_level(level): """ Temporarily modify param's logging level. """ level = level.upper() levels = [DEBUG, INFO, WARNING, ERROR, CRITICAL, VERBOSE] level_names = ['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL', 'VERBOSE'] if level not in level_names: raise Exception("Level %r not in %r" % (level, levels)) param_logger = get_logger() logging_level = param_logger.getEffectiveLevel() param_logger.setLevel(levels[level_names.index(level)]) try: yield None finally: param_logger.setLevel(logging_level) @contextmanager def _batch_call_watchers(parameterized, enable=True, run=True): """ Internal version of batch_call_watchers, adding control over queueing and running. Only actually batches events if enable=True; otherwise a no-op. Only actually calls the accumulated watchers on exit if run=True; otherwise they remain queued. """ BATCH_WATCH = parameterized.param._BATCH_WATCH parameterized.param._BATCH_WATCH = enable or parameterized.param._BATCH_WATCH try: yield finally: parameterized.param._BATCH_WATCH = BATCH_WATCH if run and not BATCH_WATCH: parameterized.param._batch_call_watchers() batch_watch = _batch_call_watchers # PARAM2_DEPRECATION: Remove this compatibility alias for param 2.0 and later. @contextmanager def batch_call_watchers(parameterized): """ Context manager to batch events to provide to Watchers on a parameterized object. This context manager queues any events triggered by setting a parameter on the supplied parameterized object, saving them up to dispatch them all at once when the context manager exits. """ BATCH_WATCH = parameterized.param._BATCH_WATCH parameterized.param._BATCH_WATCH = True try: yield finally: parameterized.param._BATCH_WATCH = BATCH_WATCH if not BATCH_WATCH: parameterized.param._batch_call_watchers() @contextmanager def edit_constant(parameterized): """ Temporarily set parameters on Parameterized object to constant=False to allow editing them. """ params = parameterized.param.objects('existing').values() constants = [p.constant for p in params] for p in params: p.constant = False try: yield except: raise finally: for (p, const) in zip(params, constants): p.constant = const @contextmanager def discard_events(parameterized): """ Context manager that discards any events within its scope triggered on the supplied parameterized object. """ batch_watch = parameterized.param._BATCH_WATCH parameterized.param._BATCH_WATCH = True watchers, events = (list(parameterized.param._watchers), list(parameterized.param._events)) try: yield except: raise finally: parameterized.param._BATCH_WATCH = batch_watch parameterized.param._watchers = watchers parameterized.param._events = events # External components can register an async executor which will run # async functions async_executor = None def classlist(class_): """ Return a list of the class hierarchy above (and including) the given class. Same as `inspect.getmro(class_)[::-1]` """ return inspect.getmro(class_)[::-1] def descendents(class_): """ Return a list of the class hierarchy below (and including) the given class. The list is ordered from least- to most-specific. Can be useful for printing the contents of an entire class hierarchy. """ assert isinstance(class_,type) q = [class_] out = [] while len(q): x = q.pop(0) out.insert(0,x) for b in x.__subclasses__(): if b not in q and b not in out: q.append(b) return out[::-1] def get_all_slots(class_): """ Return a list of slot names for slots defined in `class_` and its superclasses. """ # A subclass's __slots__ attribute does not contain slots defined # in its superclass (the superclass' __slots__ end up as # attributes of the subclass). all_slots = [] parent_param_classes = [c for c in classlist(class_)[1::]] for c in parent_param_classes: if hasattr(c,'__slots__'): all_slots+=c.__slots__ return all_slots def get_occupied_slots(instance): """ Return a list of slots for which values have been set. (While a slot might be defined, if a value for that slot hasn't been set, then it's an AttributeError to request the slot's value.) """ return [slot for slot in get_all_slots(type(instance)) if hasattr(instance,slot)] def all_equal(arg1,arg2): """ Return a single boolean for arg1==arg2, even for numpy arrays using element-wise comparison. Uses all(arg1==arg2) for sequences, and arg1==arg2 otherwise. If both objects have an '_infinitely_iterable' attribute, they are not be zipped together and are compared directly instead. """ if all(hasattr(el, '_infinitely_iterable') for el in [arg1,arg2]): return arg1==arg2 try: return all(a1 == a2 for a1, a2 in zip(arg1, arg2)) except TypeError: return arg1==arg2 # PARAM2_DEPRECATION: For Python 2 compatibility only; can be removed in param2. # # The syntax to use a metaclass changed incompatibly between 2 and # 3. The add_metaclass() class decorator below creates a class using a # specified metaclass in a way that works on both 2 and 3. For 3, can # remove this decorator and specify metaclasses in a simpler way # (https://docs.python.org/3/reference/datamodel.html#customizing-class-creation) # # Code from six (https://bitbucket.org/gutworth/six; version 1.4.1). def add_metaclass(metaclass): """Class decorator for creating a class with a metaclass.""" def wrapper(cls): orig_vars = cls.__dict__.copy() orig_vars.pop('__dict__', None) orig_vars.pop('__weakref__', None) for slots_var in orig_vars.get('__slots__', ()): orig_vars.pop(slots_var) return metaclass(cls.__name__, cls.__bases__, orig_vars) return wrapper class bothmethod(object): # pylint: disable-msg=R0903 """ 'optional @classmethod' A decorator that allows a method to receive either the class object (if called on the class) or the instance object (if called on the instance) as its first argument. Code (but not documentation) copied from: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/523033. """ # pylint: disable-msg=R0903 def __init__(self, func): self.func = func # i.e. this is also a non-data descriptor def __get__(self, obj, type_=None): if obj is None: return wraps(self.func)(partial(self.func, type_)) else: return wraps(self.func)(partial(self.func, obj)) def _getattrr(obj, attr, *args): def _getattr(obj, attr): return getattr(obj, attr, *args) return reduce(_getattr, [obj] + attr.split('.')) def accept_arguments(f): """ Decorator for decorators that accept arguments """ @wraps(f) def _f(*args, **kwargs): return lambda actual_f: f(actual_f, *args, **kwargs) return _f def no_instance_params(cls): """ Disables instance parameters on the class """ cls._disable_instance__params = True return cls def iscoroutinefunction(function): """ Whether the function is an asynchronous coroutine function. """ if not hasattr(inspect, 'iscoroutinefunction'): return False return inspect.isasyncgenfunction(function) or inspect.iscoroutinefunction(function) def instance_descriptor(f): # If parameter has an instance Parameter, delegate setting def _f(self, obj, val): instance_param = getattr(obj, '_instance__params', {}).get(self.name) if instance_param is not None and self is not instance_param: instance_param.__set__(obj, val) return return f(self, obj, val) return _f def get_method_owner(method): """ Gets the instance that owns the supplied method """ if not inspect.ismethod(method): return None if isinstance(method, partial): method = method.func return method.__self__ if sys.version_info.major >= 3 else method.im_self @accept_arguments def depends(func, *dependencies, **kw): """ Annotates a function or Parameterized method to express its dependencies. The specified dependencies can be either be Parameter instances or if a method is supplied they can be defined as strings referring to Parameters of the class, or Parameters of subobjects (Parameterized objects that are values of this object's parameters). Dependencies can either be on Parameter values, or on other metadata about the Parameter. """ # PARAM2_DEPRECATION: python2 workaround; python3 allows kw-only args # (i.e. "func, *dependencies, watch=False" rather than **kw and the check below) watch = kw.pop("watch", False) on_init = kw.pop("on_init", False) @wraps(func) def _depends(*args, **kw): return func(*args, **kw) deps = list(dependencies)+list(kw.values()) string_specs = False for dep in deps: if isinstance(dep, basestring): string_specs = True elif not isinstance(dep, Parameter): raise ValueError('The depends decorator only accepts string ' 'types referencing a parameter or parameter ' 'instances, found %s type instead.' % type(dep).__name__) elif not (isinstance(dep.owner, Parameterized) or (isinstance(dep.owner, ParameterizedMetaclass))): owner = 'None' if dep.owner is None else '%s class' % type(dep.owner).__name__ raise ValueError('Parameters supplied to the depends decorator, ' 'must be bound to a Parameterized class or ' 'instance not %s.' % owner) if (any(isinstance(dep, Parameter) for dep in deps) and any(isinstance(dep, basestring) for dep in deps)): raise ValueError('Dependencies must either be defined as strings ' 'referencing parameters on the class defining ' 'the decorated method or as parameter instances. ' 'Mixing of string specs and parameter instances ' 'is not supported.') elif string_specs and kw: raise AssertionError('Supplying keywords to the decorated method ' 'or function is not supported when referencing ' 'parameters by name.') if not string_specs and watch: # string_specs case handled elsewhere (later), in Parameterized.__init__ def cb(*events): args = (getattr(dep.owner, dep.name) for dep in dependencies) dep_kwargs = {n: getattr(dep.owner, dep.name) for n, dep in kw.items()} return func(*args, **dep_kwargs) grouped = defaultdict(list) for dep in deps: grouped[id(dep.owner)].append(dep) for group in grouped.values(): group[0].owner.param.watch(cb, [dep.name for dep in group]) _dinfo = getattr(func, '_dinfo', {}) _dinfo.update({'dependencies': dependencies, 'kw': kw, 'watch': watch, 'on_init': on_init}) _depends._dinfo = _dinfo return _depends @accept_arguments def output(func, *output, **kw): """ output allows annotating a method on a Parameterized class to declare that it returns an output of a specific type. The outputs of a Parameterized class can be queried using the Parameterized.param.outputs method. By default the output will inherit the method name but a custom name can be declared by expressing the Parameter type using a keyword argument. Declaring multiple return types using keywords is only supported in Python >= 3.6. The simplest declaration simply declares the method returns an object without any type guarantees, e.g.: @output() If a specific parameter type is specified this is a declaration that the method will return a value of that type, e.g.: @output(param.Number()) To override the default name of the output the type may be declared as a keyword argument, e.g.: @output(custom_name=param.Number()) Multiple outputs may be declared using keywords mapping from output name to the type for Python >= 3.6 or using tuples of the same format, which is supported for earlier versions, i.e. these two declarations are equivalent: @output(number=param.Number(), string=param.String()) @output(('number', param.Number()), ('string', param.String())) output also accepts Python object types which will be upgraded to a ClassSelector, e.g.: @output(int) """ if output: outputs = [] for i, out in enumerate(output): i = i if len(output) > 1 else None if isinstance(out, tuple) and len(out) == 2 and isinstance(out[0], str): outputs.append(out+(i,)) elif isinstance(out, str): outputs.append((out, Parameter(), i)) else: outputs.append((None, out, i)) elif kw: py_major = sys.version_info.major py_minor = sys.version_info.minor if (py_major < 3 or (py_major == 3 and py_minor < 6)) and len(kw) > 1: raise ValueError('Multiple output declaration using keywords ' 'only supported in Python >= 3.6.') # (requires keywords to be kept ordered, which was not true in previous versions) outputs = [(name, otype, i if len(kw) > 1 else None) for i, (name, otype) in enumerate(kw.items())] else: outputs = [(None, Parameter(), None)] names, processed = [], [] for name, otype, i in outputs: if isinstance(otype, type): if issubclass(otype, Parameter): otype = otype() else: from .import ClassSelector otype = ClassSelector(class_=otype) elif isinstance(otype, tuple) and all(isinstance(t, type) for t in otype): from .import ClassSelector otype = ClassSelector(class_=otype) if not isinstance(otype, Parameter): raise ValueError('output type must be declared with a Parameter class, ' 'instance or a Python object type.') processed.append((name, otype, i)) names.append(name) if len(set(names)) != len(names): raise ValueError('When declaring multiple outputs each value ' 'must be unique.') _dinfo = getattr(func, '_dinfo', {}) _dinfo.update({'outputs': processed}) @wraps(func) def _output(*args,**kw): return func(*args,**kw) _output._dinfo = _dinfo return _output def _parse_dependency_spec(spec): """ Parses param.depends specifications into three components: 1. The dotted path to the sub-object 2. The attribute being depended on, i.e. either a parameter or method 3. The parameter attribute being depended on """ assert spec.count(":")<=1 spec = spec.strip() m = re.match("(?P[^:]*):?(?P.*)", spec) what = m.group('what') path = "."+m.group('path') m = re.match(r"(?P.*)(\.)(?P.*)", path) obj = m.group('obj') attr = m.group("attr") return obj or None, attr, what or 'value' def _params_depended_on(minfo, dynamic=True, intermediate=True): """ Resolves dependencies declared on a Parameterized method. Dynamic dependencies, i.e. dependencies on sub-objects which may or may not yet be available, are only resolved if dynamic=True. By default intermediate dependencies, i.e. dependencies on the path to a sub-object are returned. For example for a dependency on 'a.b.c' dependencies on 'a' and 'b' are returned as long as intermediate=True. Returns lists of concrete dependencies on available parameters and dynamic dependencies specifications which have to resolved if the referenced sub-objects are defined. """ deps, dynamic_deps = [], [] dinfo = getattr(minfo.method, "_dinfo", {}) for d in dinfo.get('dependencies', list(minfo.cls.param)): ddeps, ddynamic_deps = (minfo.inst or minfo.cls).param._spec_to_obj(d, dynamic, intermediate) dynamic_deps += ddynamic_deps for dep in ddeps: if isinstance(dep, PInfo): deps.append(dep) else: method_deps, method_dynamic_deps = _params_depended_on(dep, dynamic, intermediate) deps += method_deps dynamic_deps += method_dynamic_deps return deps, dynamic_deps def _resolve_mcs_deps(obj, resolved, dynamic, intermediate=True): """ Resolves constant and dynamic parameter dependencies previously obtained using the _params_depended_on function. Existing resolved dependencies are updated with a supplied parameter instance while dynamic dependencies are resolved if possible. """ dependencies = [] for dep in resolved: if not issubclass(type(obj), dep.cls): dependencies.append(dep) continue inst = obj if dep.inst is None else dep.inst dep = PInfo(inst=inst, cls=dep.cls, name=dep.name, pobj=inst.param[dep.name], what=dep.what) dependencies.append(dep) for dep in dynamic: subresolved, _ = obj.param._spec_to_obj(dep.spec, intermediate=intermediate) for subdep in subresolved: if isinstance(subdep, PInfo): dependencies.append(subdep) else: dependencies += _params_depended_on(subdep, intermediate=intermediate)[0] return dependencies def _skip_event(*events, **kwargs): """ Checks whether a subobject event should be skipped. Returns True if all the values on the new subobject match the values on the previous subobject. """ what = kwargs.get('what', 'value') changed = kwargs.get('changed') if changed is None: return False for e in events: for p in changed: if what == 'value': old = _Undefined if e.old is None else _getattrr(e.old, p, None) new = _Undefined if e.new is None else _getattrr(e.new, p, None) else: old = _Undefined if e.old is None else _getattrr(e.old.param[p], what, None) new = _Undefined if e.new is None else _getattrr(e.new.param[p], what, None) if not Comparator.is_equal(old, new): return False return True def _m_caller(self, method_name, what='value', changed=None, callback=None): """ Wraps a method call adding support for scheduling a callback before it is executed and skipping events if a subobject has changed but its values have not. """ function = getattr(self, method_name) if iscoroutinefunction(function): import asyncio @asyncio.coroutine def caller(*events): if callback: callback(*events) if not _skip_event(*events, what=what, changed=changed): yield function() else: def caller(*events): if callback: callback(*events) if not _skip_event(*events, what=what, changed=changed): return function() caller._watcher_name = method_name return caller def _add_doc(obj, docstring): """Add a docstring to a namedtuple, if on python3 where that's allowed""" if sys.version_info[0]>2: obj.__doc__ = docstring PInfo = namedtuple("PInfo", "inst cls name pobj what"); _add_doc(PInfo, """ Object describing something being watched about a Parameter. `inst`: Parameterized instance owning the Parameter, or None `cls`: Parameterized class owning the Parameter `name`: Name of the Parameter being watched `pobj`: Parameter object being watched `what`: What is being watched on the Parameter (either 'value' or a slot name) """) MInfo = namedtuple("MInfo", "inst cls name method"); _add_doc(MInfo, """ Object describing a Parameterized method being watched. `inst`: Parameterized instance owning the method, or None `cls`: Parameterized class owning the method `name`: Name of the method being watched `method`: bound method of the object being watched """) DInfo = namedtuple("DInfo", "spec"); _add_doc(DInfo, """ Object describing dynamic dependencies. `spec`: Dependency specification to resolve """) Event = namedtuple("Event", "what name obj cls old new type"); _add_doc(Event, """ Object representing an event that triggers a Watcher. `what`: What is being watched on the Parameter (either value or a slot name) `name`: Name of the Parameter that was set or triggered `obj`: Parameterized instance owning the watched Parameter, or None `cls`: Parameterized class owning the watched Parameter `old`: Previous value of the item being watched `new`: New value of the item being watched `type`: `triggered` if this event was triggered explicitly), `changed` if the item was set and watching for `onlychanged`, `set` if the item was set, or None if type not yet known """) _Watcher = namedtuple("Watcher", "inst cls fn mode onlychanged parameter_names what queued precedence") class Watcher(_Watcher): """ Object declaring a callback function to invoke when an Event is triggered on a watched item. `inst`: Parameterized instance owning the watched Parameter, or None `cls`: Parameterized class owning the watched Parameter `fn`: Callback function to invoke when triggered by a watched Parameter `mode`: 'args' for param.watch (call `fn` with PInfo object positional args), or 'kwargs' for param.watch_values (call `fn` with : keywords) `onlychanged`: If True, only trigger for actual changes, not setting to the current value `parameter_names`: List of Parameters to watch, by name `what`: What to watch on the Parameters (either 'value' or a slot name) `queued`: Immediately invoke callbacks triggered during processing of an Event (if False), or queue them up for processing later, after this event has been handled (if True) `precedence`: A numeric value which determines the precedence of the watcher. Lower precedence values are executed with higher priority. """ def __new__(cls_, *args, **kwargs): """ Allows creating Watcher without explicit precedence value. """ values = dict(zip(cls_._fields, args)) values.update(kwargs) if 'precedence' not in values: values['precedence'] = 0 return super(Watcher, cls_).__new__(cls_, **values) def __iter__(self): """ Backward compatibility layer to allow tuple unpacking without the precedence value. Important for Panel which creates a custom Watcher and uses tuple unpacking. Will be dropped in Param 3.x. """ return iter(self[:-1]) def __str__(self): cls = type(self) attrs = ', '.join(['%s=%r' % (f, getattr(self, f)) for f in cls._fields]) return "{cls}({attrs})".format(cls=cls.__name__, attrs=attrs) class ParameterMetaclass(type): """ Metaclass allowing control over creation of Parameter classes. """ def __new__(mcs,classname,bases,classdict): # store the class's docstring in __classdoc if '__doc__' in classdict: classdict['__classdoc']=classdict['__doc__'] # when asking for help on Parameter *object*, return the doc slot classdict['__doc__']=property(attrgetter('doc')) # To get the benefit of slots, subclasses must themselves define # __slots__, whether or not they define attributes not present in # the base Parameter class. That's because a subclass will have # a __dict__ unless it also defines __slots__. if '__slots__' not in classdict: classdict['__slots__']=[] # No special handling for a __dict__ slot; should there be? return type.__new__(mcs,classname,bases,classdict) def __getattribute__(mcs,name): if name=='__doc__': # when asking for help on Parameter *class*, return the # stored class docstring return type.__getattribute__(mcs,'__classdoc') else: return type.__getattribute__(mcs,name) @add_metaclass(ParameterMetaclass) class Parameter(object): """ An attribute descriptor for declaring parameters. Parameters are a special kind of class attribute. Setting a Parameterized class attribute to be a Parameter instance causes that attribute of the class (and the class's instances) to be treated as a Parameter. This allows special behavior, including dynamically generated parameter values, documentation strings, constant and read-only parameters, and type or range checking at assignment time. For example, suppose someone wants to define two new kinds of objects Foo and Bar, such that Bar has a parameter delta, Foo is a subclass of Bar, and Foo has parameters alpha, sigma, and gamma (and delta inherited from Bar). She would begin her class definitions with something like this:: class Bar(Parameterized): delta = Parameter(default=0.6, doc='The difference between steps.') ... class Foo(Bar): alpha = Parameter(default=0.1, doc='The starting value.') sigma = Parameter(default=0.5, doc='The standard deviation.', constant=True) gamma = Parameter(default=1.0, doc='The ending value.') ... Class Foo would then have four parameters, with delta defaulting to 0.6. Parameters have several advantages over plain attributes: 1. Parameters can be set automatically when an instance is constructed: The default constructor for Foo (and Bar) will accept arbitrary keyword arguments, each of which can be used to specify the value of a Parameter of Foo (or any of Foo's superclasses). E.g., if a script does this:: myfoo = Foo(alpha=0.5) myfoo.alpha will return 0.5, without the Foo constructor needing special code to set alpha. If Foo implements its own constructor, keyword arguments will still be accepted if the constructor accepts a dictionary of keyword arguments (as in ``def __init__(self,**params):``), and then each class calls its superclass (as in ``super(Foo,self).__init__(**params)``) so that the Parameterized constructor will process the keywords. 2. A Parameterized class need specify only the attributes of a Parameter whose values differ from those declared in superclasses; the other values will be inherited. E.g. if Foo declares:: delta = Parameter(default=0.2) the default value of 0.2 will override the 0.6 inherited from Bar, but the doc will be inherited from Bar. 3. The Parameter descriptor class can be subclassed to provide more complex behavior, allowing special types of parameters that, for example, require their values to be numbers in certain ranges, generate their values dynamically from a random distribution, or read their values from a file or other external source. 4. The attributes associated with Parameters provide enough information for automatically generating property sheets in graphical user interfaces, allowing Parameterized instances to be edited by users. Note that Parameters can only be used when set as class attributes of Parameterized classes. Parameters used as standalone objects, or as class attributes of non-Parameterized classes, will not have the behavior described here. """ # Because they implement __get__ and __set__, Parameters are known # as 'descriptors' in Python; see "Implementing Descriptors" and # "Invoking Descriptors" in the 'Customizing attribute access' # section of the Python reference manual: # http://docs.python.org/ref/attribute-access.html # # Overview of Parameters for programmers # ====================================== # # Consider the following code: # # # class A(Parameterized): # p = Parameter(default=1) # # a1 = A() # a2 = A() # # # * a1 and a2 share one Parameter object (A.__dict__['p']). # # * The default (class) value of p is stored in this Parameter # object (A.__dict__['p'].default). # # * If the value of p is set on a1 (e.g. a1.p=2), a1's value of p # is stored in a1 itself (a1.__dict__['_p_param_value']) # # * When a1.p is requested, a1.__dict__['_p_param_value'] is # returned. When a2.p is requested, '_p_param_value' is not # found in a2.__dict__, so A.__dict__['p'].default (i.e. A.p) is # returned instead. # # # Be careful when referring to the 'name' of a Parameter: # # * A Parameterized class has a name for the attribute which is # being represented by the Parameter ('p' in the example above); # in the code, this is called the 'attrib_name'. # # * When a Parameterized instance has its own local value for a # parameter, it is stored as '_X_param_value' (where X is the # attrib_name for the Parameter); in the code, this is called # the internal_name. # So that the extra features of Parameters do not require a lot of # overhead, Parameters are implemented using __slots__ (see # http://www.python.org/doc/2.4/ref/slots.html). Instead of having # a full Python dictionary associated with each Parameter instance, # Parameter instances have an enumerated list (named __slots__) of # attributes, and reserve just enough space to store these # attributes. Using __slots__ requires special support for # operations to copy and restore Parameters (e.g. for Python # persistent storage pickling); see __getstate__ and __setstate__. __slots__ = ['name', '_internal_name', 'default', 'doc', 'precedence', 'instantiate', 'constant', 'readonly', 'pickle_default_value', 'allow_None', 'per_instance', 'watchers', 'owner', '_label'] # Note: When initially created, a Parameter does not know which # Parameterized class owns it, nor does it know its names # (attribute name, internal name). Once the owning Parameterized # class is created, owner, name, and _internal_name are # set. _serializers = {'json': serializer.JSONSerialization} def __init__(self,default=None, doc=None, label=None, precedence=None, # pylint: disable-msg=R0913 instantiate=False, constant=False, readonly=False, pickle_default_value=True, allow_None=False, per_instance=True): """Initialize a new Parameter object and store the supplied attributes: default: the owning class's value for the attribute represented by this Parameter, which can be overridden in an instance. doc: docstring explaining what this parameter represents. label: optional text label to be used when this Parameter is shown in a listing. If no label is supplied, the attribute name for this parameter in the owning Parameterized object is used. precedence: a numeric value, usually in the range 0.0 to 1.0, which allows the order of Parameters in a class to be defined in a listing or e.g. in GUI menus. A negative precedence indicates a parameter that should be hidden in such listings. instantiate: controls whether the value of this Parameter will be deepcopied when a Parameterized object is instantiated (if True), or if the single default value will be shared by all Parameterized instances (if False). For an immutable Parameter value, it is best to leave instantiate at the default of False, so that a user can choose to change the value at the Parameterized instance level (affecting only that instance) or at the Parameterized class or superclass level (affecting all existing and future instances of that class or superclass). For a mutable Parameter value, the default of False is also appropriate if you want all instances to share the same value state, e.g. if they are each simply referring to a single global object like a singleton. If instead each Parameterized should have its own independently mutable value, instantiate should be set to True, but note that there is then no simple way to change the value of this Parameter at the class or superclass level, because each instance, once created, will then have an independently instantiated value. constant: if true, the Parameter value can be changed only at the class level or in a Parameterized constructor call. The value is otherwise constant on the Parameterized instance, once it has been constructed. readonly: if true, the Parameter value cannot ordinarily be changed by setting the attribute at the class or instance levels at all. The value can still be changed in code by temporarily overriding the value of this slot and then restoring it, which is useful for reporting values that the _user_ should never change but which do change during code execution. pickle_default_value: whether the default value should be pickled. Usually, you would want the default value to be pickled, but there are rare cases where that would not be the case (e.g. for file search paths that are specific to a certain system). per_instance: whether a separate Parameter instance will be created for every Parameterized instance. True by default. If False, all instances of a Parameterized class will share the same Parameter object, including all validation attributes (bounds, etc.). See also instantiate, which is conceptually similar but affects the Parameter value rather than the Parameter object. allow_None: if True, None is accepted as a valid value for this Parameter, in addition to any other values that are allowed. If the default value is defined as None, allow_None is set to True automatically. default, doc, and precedence all default to None, which allows inheritance of Parameter slots (attributes) from the owning-class' class hierarchy (see ParameterizedMetaclass). """ self.name = None self.owner = None self.precedence = precedence self.default = default self.doc = doc self.constant = constant or readonly # readonly => constant self.readonly = readonly self._label = label self._internal_name = None self._set_instantiate(instantiate) self.pickle_default_value = pickle_default_value self.allow_None = (default is None or allow_None) self.watchers = {} self.per_instance = per_instance @classmethod def serialize(cls, value): "Given the parameter value, return a Python value suitable for serialization" return value @classmethod def deserialize(cls, value): "Given a serializable Python value, return a value that the parameter can be set to" return value def schema(self, safe=False, subset=None, mode='json'): if serializer is None: raise ImportError('Cannot import serializer.py needed to generate schema') if mode not in self._serializers: raise KeyError('Mode %r not in available serialization formats %r' % (mode, list(self._serializers.keys()))) return self._serializers[mode].param_schema(self.__class__.__name__, self, safe=safe, subset=subset) @property def label(self): if self.name and self._label is None: return label_formatter(self.name) else: return self._label @label.setter def label(self, val): self._label = val def _set_instantiate(self,instantiate): """Constant parameters must be instantiated.""" # instantiate doesn't actually matter for read-only # parameters, since they can't be set even on a class. But # having this code avoids needless instantiation. if self.readonly: self.instantiate = False else: self.instantiate = instantiate or self.constant # pylint: disable-msg=W0201 def __setattr__(self, attribute, value): if attribute == 'name' and getattr(self, 'name', None) and value != self.name: raise AttributeError("Parameter name cannot be modified after " "it has been bound to a Parameterized.") implemented = (attribute != "default" and hasattr(self, 'watchers') and attribute in self.watchers) slot_attribute = attribute in self.__slots__ try: old = getattr(self, attribute) if implemented else NotImplemented if slot_attribute: self._on_set(attribute, old, value) except AttributeError as e: if slot_attribute: # If Parameter slot is defined but an AttributeError was raised # we are in __setstate__ and watchers should not be triggered old = NotImplemented else: raise e super(Parameter, self).__setattr__(attribute, value) if old is NotImplemented: return event = Event(what=attribute, name=self.name, obj=None, cls=self.owner, old=old, new=value, type=None) for watcher in self.watchers[attribute]: self.owner.param._call_watcher(watcher, event) if not self.owner.param._BATCH_WATCH: self.owner.param._batch_call_watchers() def _on_set(self, attribute, old, value): """ Can be overridden on subclasses to handle changes when parameter attribute is set. """ def __get__(self, obj, objtype): # pylint: disable-msg=W0613 """ Return the value for this Parameter. If called for a Parameterized class, produce that class's value (i.e. this Parameter object's 'default' attribute). If called for a Parameterized instance, produce that instance's value, if one has been set - otherwise produce the class's value (default). """ if obj is None: # e.g. when __get__ called for a Parameterized class result = self.default else: result = obj.__dict__.get(self._internal_name,self.default) return result @instance_descriptor def __set__(self, obj, val): """ Set the value for this Parameter. If called for a Parameterized class, set that class's value (i.e. set this Parameter object's 'default' attribute). If called for a Parameterized instance, set the value of this Parameter on that instance (i.e. in the instance's __dict__, under the parameter's internal_name). If the Parameter's constant attribute is True, only allows the value to be set for a Parameterized class or on uninitialized Parameterized instances. If the Parameter's readonly attribute is True, only allows the value to be specified in the Parameter declaration inside the Parameterized source code. A read-only parameter also cannot be set on a Parameterized class. Note that until we support some form of read-only object, it is still possible to change the attributes of the object stored in a constant or read-only Parameter (e.g. one item in a list). """ # PARAM2_DEPRECATION: For Python 2 compatibility only; # Deprecated Number set_hook called here to avoid duplicating setter if hasattr(self, 'set_hook'): val = self.set_hook(obj,val) self._validate(val) _old = NotImplemented # obj can be None if __set__ is called for a Parameterized class if self.constant or self.readonly: if self.readonly: raise TypeError("Read-only parameter '%s' cannot be modified" % self.name) elif obj is None: _old = self.default self.default = val elif not obj.initialized: _old = obj.__dict__.get(self._internal_name, self.default) obj.__dict__[self._internal_name] = val else: _old = obj.__dict__.get(self._internal_name, self.default) if val is not _old: raise TypeError("Constant parameter '%s' cannot be modified"%self.name) else: if obj is None: _old = self.default self.default = val else: _old = obj.__dict__.get(self._internal_name, self.default) obj.__dict__[self._internal_name] = val self._post_setter(obj, val) if obj is not None: if not getattr(obj, 'initialized', False): return obj.param._update_deps(self.name) if obj is None: watchers = self.watchers.get("value") elif hasattr(obj, '_param_watchers') and self.name in obj._param_watchers: watchers = obj._param_watchers[self.name].get('value') if watchers is None: watchers = self.watchers.get("value") else: watchers = None obj = self.owner if obj is None else obj if obj is None or not watchers: return event = Event(what='value', name=self.name, obj=obj, cls=self.owner, old=_old, new=val, type=None) # Copy watchers here since they may be modified inplace during iteration for watcher in sorted(watchers, key=lambda w: w.precedence): obj.param._call_watcher(watcher, event) if not obj.param._BATCH_WATCH: obj.param._batch_call_watchers() def _validate_value(self, value, allow_None): """Implements validation for parameter value""" def _validate(self, val): """Implements validation for the parameter value and attributes""" self._validate_value(val, self.allow_None) def _post_setter(self, obj, val): """Called after the parameter value has been validated and set""" def __delete__(self,obj): raise TypeError("Cannot delete '%s': Parameters deletion not allowed." % self.name) def _set_names(self, attrib_name): if None not in (self.owner, self.name) and attrib_name != self.name: raise AttributeError('The %s parameter %r has already been ' 'assigned a name by the %s class, ' 'could not assign new name %r. Parameters ' 'may not be shared by multiple classes; ' 'ensure that you create a new parameter ' 'instance for each new class.' % (type(self).__name__, self.name, self.owner.name, attrib_name)) self.name = attrib_name self._internal_name = "_%s_param_value" % attrib_name def __getstate__(self): """ All Parameters have slots, not a dict, so we have to support pickle and deepcopy ourselves. """ state = {} for slot in get_occupied_slots(self): state[slot] = getattr(self,slot) return state def __setstate__(self,state): # set values of __slots__ (instead of in non-existent __dict__) # Handle renamed slots introduced for instance params if '_attrib_name' in state: state['name'] = state.pop('_attrib_name') if '_owner' in state: state['owner'] = state.pop('_owner') if 'watchers' not in state: state['watchers'] = {} if 'per_instance' not in state: state['per_instance'] = False if '_label' not in state: state['_label'] = None for (k,v) in state.items(): setattr(self,k,v) # Define one particular type of Parameter that is used in this file class String(Parameter): r""" A String Parameter, with a default value and optional regular expression (regex) matching. Example of using a regex to implement IPv4 address matching:: class IPAddress(String): '''IPv4 address as a string (dotted decimal notation)''' def __init__(self, default="0.0.0.0", allow_None=False, **kwargs): ip_regex = r'^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$' super(IPAddress, self).__init__(default=default, regex=ip_regex, **kwargs) """ __slots__ = ['regex'] def __init__(self, default="", regex=None, allow_None=False, **kwargs): super(String, self).__init__(default=default, allow_None=allow_None, **kwargs) self.regex = regex self.allow_None = (default is None or allow_None) self._validate(default) def _validate_regex(self, val, regex): if (val is None and self.allow_None): return if regex is not None and re.match(regex, val) is None: raise ValueError("String parameter %r value %r does not match regex %r." % (self.name, val, regex)) def _validate_value(self, val, allow_None): if allow_None and val is None: return if not isinstance(val, basestring): raise ValueError("String parameter %r only takes a string value, " "not value of type %s." % (self.name, type(val))) def _validate(self, val): self._validate_value(val, self.allow_None) self._validate_regex(val, self.regex) class shared_parameters(object): """ Context manager to share parameter instances when creating multiple Parameterized objects of the same type. Parameter default values are instantiated once and cached to be reused when another Parameterized object of the same type is instantiated. Can be useful to easily modify large collections of Parameterized objects at once and can provide a significant speedup. """ _share = False _shared_cache = {} def __enter__(self): shared_parameters._share = True def __exit__(self, exc_type, exc_val, exc_tb): shared_parameters._share = False shared_parameters._shared_cache = {} def as_uninitialized(fn): """ Decorator: call fn with the parameterized_instance's initialization flag set to False, then revert the flag. (Used to decorate Parameterized methods that must alter a constant Parameter.) """ @wraps(fn) def override_initialization(self_,*args,**kw): parameterized_instance = self_.self original_initialized = parameterized_instance.initialized parameterized_instance.initialized = False fn(parameterized_instance, *args, **kw) parameterized_instance.initialized = original_initialized return override_initialization class Comparator(object): """ Comparator defines methods for determining whether two objects should be considered equal. It works by registering custom comparison functions, which may either be registed by type or with a predicate function. If no matching comparison can be found for the two objects the comparison will return False. If registered by type the Comparator will check whether both objects are of that type and apply the comparison. If the equality function is instead registered with a function it will call the function with each object individually to check if the comparison applies. This is useful for defining comparisons for objects without explicitly importing them. To use the Comparator simply call the is_equal function. """ equalities = { numbers.Number: operator.eq, basestring: operator.eq, bytes: operator.eq, type(None): operator.eq } @classmethod def is_equal(cls, obj1, obj2): for eq_type, eq in cls.equalities.items(): if ((isinstance(eq_type, FunctionType) and eq_type(obj1) and eq_type(obj2)) or (isinstance(obj1, eq_type) and isinstance(obj2, eq_type))): return eq(obj1, obj2) if isinstance(obj2, (list, set, tuple)): return cls.compare_iterator(obj1, obj2) elif isinstance(obj2, dict): return cls.compare_mapping(obj1, obj2) return False @classmethod def compare_iterator(cls, obj1, obj2): if type(obj1) != type(obj2) or len(obj1) != len(obj2): return False for o1, o2 in zip(obj1, obj2): if not cls.is_equal(o1, o2): return False return True @classmethod def compare_mapping(cls, obj1, obj2): if type(obj1) != type(obj2) or len(obj1) != len(obj2): return False for k in obj1: if k in obj2: if not cls.is_equal(obj1[k], obj2[k]): return False else: return False return True class Parameters(object): """Object that holds the namespace and implementation of Parameterized methods as well as any state that is not in __slots__ or the Parameters themselves. Exists at both the metaclass level (instantiated by the metaclass) and at the instance level. Can contain state specific to either the class or the instance as necessary. """ _disable_stubs = False # Flag used to disable stubs in the API1 tests # None for no action, True to raise and False to warn. def __init__(self_, cls, self=None): """ cls is the Parameterized class which is always set. self is the instance if set. """ self_.cls = cls self_.self = self @property def _BATCH_WATCH(self_): return self_.self_or_cls._parameters_state['BATCH_WATCH'] @_BATCH_WATCH.setter def _BATCH_WATCH(self_, value): self_.self_or_cls._parameters_state['BATCH_WATCH'] = value @property def _TRIGGER(self_): return self_.self_or_cls._parameters_state['TRIGGER'] @_TRIGGER.setter def _TRIGGER(self_, value): self_.self_or_cls._parameters_state['TRIGGER'] = value @property def _events(self_): return self_.self_or_cls._parameters_state['events'] @_events.setter def _events(self_, value): self_.self_or_cls._parameters_state['events'] = value @property def _watchers(self_): return self_.self_or_cls._parameters_state['watchers'] @_watchers.setter def _watchers(self_, value): self_.self_or_cls._parameters_state['watchers'] = value @property def watchers(self): """Read-only list of watchers on this Parameterized""" return self._watchers @property def self_or_cls(self_): return self_.cls if self_.self is None else self_.self def __setstate__(self, state): # Set old parameters state on Parameterized._parameters_state self_or_cls = state.get('self', state.get('cls')) for k in self_or_cls._parameters_state: key = '_'+k if key in state: self_or_cls._parameters_state[k] = state.pop(key) for k, v in state.items(): setattr(self, k, v) def __getitem__(self_, key): """ Returns the class or instance parameter """ inst = self_.self parameters = self_.objects(False) if inst is None else inst.param.objects(False) p = parameters[key] if (inst is not None and getattr(inst, 'initialized', False) and p.per_instance and not getattr(inst, '_disable_instance__params', False)): if key not in inst._instance__params: try: # Do not copy watchers on class parameter watchers = p.watchers p.watchers = {} p = copy.copy(p) except: raise finally: p.watchers = {k: list(v) for k, v in watchers.items()} p.owner = inst inst._instance__params[key] = p else: p = inst._instance__params[key] return p def __dir__(self_): """ Adds parameters to dir """ return super(Parameters, self_).__dir__() + list(self_) def __iter__(self_): """ Iterates over the parameters on this object. """ for p in self_.objects(instance=False): yield p def __contains__(self_, param): return param in list(self_) def __getattr__(self_, attr): """ Extends attribute access to parameter objects. """ cls = self_.__dict__.get('cls') if cls is None: # Class not initialized raise AttributeError try: params = list(getattr(cls, '_%s__params' % cls.__name__)) except AttributeError: params = [n for class_ in classlist(cls) for n, v in class_.__dict__.items() if isinstance(v, Parameter)] if attr in params: return self_.__getitem__(attr) elif self_.self is None: raise AttributeError("type object '%s.param' has no attribute %r" % (self_.cls.__name__, attr)) else: raise AttributeError("'%s.param' object has no attribute %r" % (self_.cls.__name__, attr)) @as_uninitialized def _set_name(self_, name): self = self_.param.self self.name=name @as_uninitialized def _generate_name(self_): self = self_.param.self self.param._set_name('%s%05d' % (self.__class__.__name__ ,object_count)) @as_uninitialized def _setup_params(self_,**params): """ Initialize default and keyword parameter values. First, ensures that all Parameters with 'instantiate=True' (typically used for mutable Parameters) are copied directly into each object, to ensure that there is an independent copy (to avoid surprising aliasing errors). Then sets each of the keyword arguments, warning when any of them are not defined as parameters. Constant Parameters can be set during calls to this method. """ self = self_.param.self ## Deepcopy all 'instantiate=True' parameters # (building a set of names first to avoid redundantly # instantiating a later-overridden parent class's parameter) params_to_instantiate = {} for class_ in classlist(type(self)): if not issubclass(class_, Parameterized): continue for (k, v) in class_.param._parameters.items(): # (avoid replacing name with the default of None) if v.instantiate and k != "name": params_to_instantiate[k] = v for p in params_to_instantiate.values(): self.param._instantiate_param(p) ## keyword arg setting for name, val in params.items(): desc = self.__class__.get_param_descriptor(name)[0] # pylint: disable-msg=E1101 if not desc: self.param.warning("Setting non-parameter attribute %s=%s using a mechanism intended only for parameters", name, val) # i.e. if not desc it's setting an attribute in __dict__, not a Parameter setattr(self, name, val) # PARAM2_DEPRECATION: Backwards compatibilitity for param<1.12 @classmethod def deprecate(cls, fn): """ Decorator to issue warnings for API moving onto the param namespace and to add a docstring directing people to the appropriate method. """ def inner(*args, **kwargs): if cls._disable_stubs: raise AssertionError('Stubs supporting old API disabled') elif cls._disable_stubs is None: pass elif cls._disable_stubs is False: get_logger(name=args[0].__class__.__name__).log( WARNING, 'Use method %r via param namespace ' % fn.__name__) return fn(*args, **kwargs) inner.__doc__= "Inspect .param.%s method for the full docstring" % fn.__name__ return inner @classmethod def _changed(cls, event): """ Predicate that determines whether a Event object has actually changed such that old != new. """ return not Comparator.is_equal(event.old, event.new) def _instantiate_param(self_, param_obj, dict_=None, key=None): # deepcopy param_obj.default into self.__dict__ (or dict_ if supplied) # under the parameter's _internal_name (or key if supplied) self = self_.self dict_ = dict_ or self.__dict__ key = key or param_obj._internal_name if shared_parameters._share: param_key = (str(type(self)), param_obj.name) if param_key in shared_parameters._shared_cache: new_object = shared_parameters._shared_cache[param_key] else: new_object = copy.deepcopy(param_obj.default) shared_parameters._shared_cache[param_key] = new_object else: new_object = copy.deepcopy(param_obj.default) dict_[key] = new_object if isinstance(new_object, Parameterized): global object_count object_count += 1 # Writes over name given to the original object; # could instead have kept the same name new_object.param._generate_name() def _update_deps(self_, attribute=None, init=False): obj = self_.self init_methods = [] for method, queued, on_init, constant, dynamic in type(obj).param._depends['watch']: # On initialization set up constant watchers; otherwise # clean up previous dynamic watchers for the updated attribute dynamic = [d for d in dynamic if attribute is None or d.spec.startswith(attribute)] if init: constant_grouped = defaultdict(list) for dep in _resolve_mcs_deps(obj, constant, []): constant_grouped[(id(dep.inst), id(dep.cls), dep.what)].append((None, dep)) for group in constant_grouped.values(): self_._watch_group(obj, method, queued, group) m = getattr(self_.self, method) if on_init and m not in init_methods: init_methods.append(m) elif dynamic: for w in obj._dynamic_watchers.pop(method, []): (w.inst or w.cls).param.unwatch(w) else: continue # Resolve dynamic dependencies one-by-one to be able to trace their watchers grouped = defaultdict(list) for ddep in dynamic: for dep in _resolve_mcs_deps(obj, [], [ddep]): grouped[(id(dep.inst), id(dep.cls), dep.what)].append((ddep, dep)) for group in grouped.values(): watcher = self_._watch_group(obj, method, queued, group, attribute) obj._dynamic_watchers[method].append(watcher) for m in init_methods: m() def _resolve_dynamic_deps(self, obj, dynamic_dep, param_dep, attribute): """ If a subobject whose parameters are being depended on changes we should only trigger events if the actual parameter values of the new object differ from those on the old subobject, therefore we accumulate parameters to compare on a subobject change event. Additionally we need to make sure to notify the parent object if a subobject changes so the dependencies can be reinitialized so we return a callback which updates the dependencies. """ subobj = obj subobjs = [obj] for subpath in dynamic_dep.spec.split('.')[:-1]: subobj = getattr(subobj, subpath.split(':')[0], None) subobjs.append(subobj) dep_obj = (param_dep.inst or param_dep.cls) if dep_obj not in subobjs[:-1]: return None, None, param_dep.what depth = subobjs.index(dep_obj) callback = None if depth > 0: def callback(*events): """ If a subobject changes, we need to notify the main object to update the dependencies. """ obj.param._update_deps(attribute) p = '.'.join(dynamic_dep.spec.split(':')[0].split('.')[depth+1:]) if p == 'param': subparams = [sp for sp in list(subobjs[-1].param)] else: subparams = [p] if ':' in dynamic_dep.spec: what = dynamic_dep.spec.split(':')[-1] else: what = param_dep.what return subparams, callback, what def _watch_group(self_, obj, name, queued, group, attribute=None): """ Sets up a watcher for a group of dependencies. Ensures that if the dependency was dynamically generated we check whether a subobject change event actually causes a value change and that we update the existing watchers, i.e. clean up watchers on the old subobject and create watchers on the new subobject. """ dynamic_dep, param_dep = group[0] dep_obj = (param_dep.inst or param_dep.cls) params = [] for _, g in group: if g.name not in params: params.append(g.name) if dynamic_dep is None: subparams, callback, what = None, None, param_dep.what else: subparams, callback, what = self_._resolve_dynamic_deps( obj, dynamic_dep, param_dep, attribute) mcaller = _m_caller(obj, name, what, subparams, callback) return dep_obj.param._watch( mcaller, params, param_dep.what, queued=queued, precedence=-1) # Classmethods # PARAM2_DEPRECATION: Backwards compatibilitity for param<1.12 def print_param_defaults(self_): """Print the default values of all cls's Parameters.""" cls = self_.cls for key,val in cls.__dict__.items(): if isinstance(val,Parameter): print(cls.__name__+'.'+key+ '='+ repr(val.default)) # PARAM2_DEPRECATION: Backwards compatibilitity for param<1.12 def set_default(self_,param_name,value): """ Set the default value of param_name. Equivalent to setting param_name on the class. """ cls = self_.cls setattr(cls,param_name,value) def add_parameter(self_, param_name, param_obj): """ Add a new Parameter object into this object's class. Should result in a Parameter equivalent to one declared in the class's source code. """ # Could have just done setattr(cls,param_name,param_obj), # which is supported by the metaclass's __setattr__ , but # would need to handle the params() cache as well # (which is tricky but important for startup speed). cls = self_.cls type.__setattr__(cls,param_name,param_obj) ParameterizedMetaclass._initialize_parameter(cls,param_name,param_obj) # delete cached params() try: delattr(cls,'_%s__params'%cls.__name__) except AttributeError: pass # PARAM2_DEPRECATION: Backwards compatibilitity for param<1.12 _add_parameter = add_parameter # PARAM2_DEPRECATION: Backwards compatibilitity for param<1.12 def params(self_, parameter_name=None): """ Return the Parameters of this class as the dictionary {name: parameter_object} Includes Parameters from this class and its superclasses. """ pdict = self_.objects(instance='existing') if parameter_name is None: return pdict else: return pdict[parameter_name] # Bothmethods def update(self_, *args, **kwargs): """ For the given dictionary or iterable or set of param=value keyword arguments, sets the corresponding parameter of this object or class to the given value. """ BATCH_WATCH = self_.self_or_cls.param._BATCH_WATCH self_.self_or_cls.param._BATCH_WATCH = True self_or_cls = self_.self_or_cls if args: if len(args) == 1 and not kwargs: kwargs = args[0] else: self_.self_or_cls.param._BATCH_WATCH = False raise ValueError("%s.update accepts *either* an iterable or key=value pairs, not both" % (self_or_cls.name)) trigger_params = [k for k in kwargs if ((k in self_.self_or_cls.param) and hasattr(self_.self_or_cls.param[k], '_autotrigger_value'))] for tp in trigger_params: self_.self_or_cls.param[tp]._mode = 'set' for (k, v) in kwargs.items(): if k not in self_or_cls.param: self_.self_or_cls.param._BATCH_WATCH = False raise ValueError("'%s' is not a parameter of %s" % (k, self_or_cls.name)) try: setattr(self_or_cls, k, v) except: self_.self_or_cls.param._BATCH_WATCH = False raise self_.self_or_cls.param._BATCH_WATCH = BATCH_WATCH if not BATCH_WATCH: self_._batch_call_watchers() for tp in trigger_params: p = self_.self_or_cls.param[tp] p._mode = 'reset' setattr(self_or_cls, tp, p._autotrigger_reset_value) p._mode = 'set-reset' # PARAM2_DEPRECATION: Could be removed post param 2.0; use update() instead. def set_param(self_, *args,**kwargs): """ For each param=value keyword argument, sets the corresponding parameter of this object or class to the given value. For backwards compatibility, also accepts set_param("param",value) for a single parameter value using positional arguments, but the keyword interface is preferred because it is more compact and can set multiple values. """ self_or_cls = self_.self_or_cls if args: if len(args) == 2 and not args[0] in kwargs and not kwargs: kwargs[args[0]] = args[1] else: raise ValueError("Invalid positional arguments for %s.set_param" % (self_or_cls.name)) return self_.update(kwargs) def objects(self_, instance=True): """ Returns the Parameters of this instance or class If instance=True and called on a Parameterized instance it will create instance parameters for all Parameters defined on the class. To force class parameters to be returned use instance=False. Since classes avoid creating instance parameters unless necessary you may also request only existing instance parameters to be returned by setting instance='existing'. """ cls = self_.cls # We cache the parameters because this method is called often, # and parameters are rarely added (and cannot be deleted) try: pdict = getattr(cls, '_%s__params' % cls.__name__) except AttributeError: paramdict = {} for class_ in classlist(cls): for name, val in class_.__dict__.items(): if isinstance(val, Parameter): paramdict[name] = val # We only want the cache to be visible to the cls on which # params() is called, so we mangle the name ourselves at # runtime (if we were to mangle it now, it would be # _Parameterized.__params for all classes). setattr(cls, '_%s__params' % cls.__name__, paramdict) pdict = paramdict if instance and self_.self is not None: if instance == 'existing': if getattr(self_.self, 'initialized', False) and self_.self._instance__params: return dict(pdict, **self_.self._instance__params) return pdict else: return {k: self_.self.param[k] for k in pdict} return pdict def trigger(self_, *param_names): """ Trigger watchers for the given set of parameter names. Watchers will be triggered whether or not the parameter values have actually changed. As a special case, the value will actually be changed for a Parameter of type Event, setting it to True so that it is clear which Event parameter has been triggered. """ trigger_params = [p for p in self_.self_or_cls.param if hasattr(self_.self_or_cls.param[p], '_autotrigger_value')] triggers = {p:self_.self_or_cls.param[p]._autotrigger_value for p in trigger_params if p in param_names} events = self_.self_or_cls.param._events watchers = self_.self_or_cls.param._watchers self_.self_or_cls.param._events = [] self_.self_or_cls.param._watchers = [] param_values = self_.values() params = {name: param_values[name] for name in param_names} self_.self_or_cls.param._TRIGGER = True self_.set_param(**dict(params, **triggers)) self_.self_or_cls.param._TRIGGER = False self_.self_or_cls.param._events += events self_.self_or_cls.param._watchers += watchers def _update_event_type(self_, watcher, event, triggered): """ Returns an updated Event object with the type field set appropriately. """ if triggered: event_type = 'triggered' else: event_type = 'changed' if watcher.onlychanged else 'set' return Event(what=event.what, name=event.name, obj=event.obj, cls=event.cls, old=event.old, new=event.new, type=event_type) def _execute_watcher(self, watcher, events): if watcher.mode == 'args': args, kwargs = events, {} else: args, kwargs = (), {event.name: event.new for event in events} if iscoroutinefunction(watcher.fn): if async_executor is None: raise RuntimeError("Could not execute %s coroutine function. " "Please register a asynchronous executor on " "param.parameterized.async_executor, which " "schedules the function on an event loop." % watcher.fn) async_executor(partial(watcher.fn, *args, **kwargs)) else: watcher.fn(*args, **kwargs) def _call_watcher(self_, watcher, event): """ Invoke the given watcher appropriately given an Event object. """ if self_.self_or_cls.param._TRIGGER: pass elif watcher.onlychanged and (not self_._changed(event)): return if self_.self_or_cls.param._BATCH_WATCH: self_._events.append(event) if watcher not in self_._watchers: self_._watchers.append(watcher) else: event = self_._update_event_type(watcher, event, self_.self_or_cls.param._TRIGGER) with _batch_call_watchers(self_.self_or_cls, enable=watcher.queued, run=False): self_._execute_watcher(watcher, (event,)) def _batch_call_watchers(self_): """ Batch call a set of watchers based on the parameter value settings in kwargs using the queued Event and watcher objects. """ while self_.self_or_cls.param._events: event_dict = OrderedDict([((event.name, event.what), event) for event in self_.self_or_cls.param._events]) watchers = self_.self_or_cls.param._watchers[:] self_.self_or_cls.param._events = [] self_.self_or_cls.param._watchers = [] for watcher in sorted(watchers, key=lambda w: w.precedence): events = [self_._update_event_type(watcher, event_dict[(name, watcher.what)], self_.self_or_cls.param._TRIGGER) for name in watcher.parameter_names if (name, watcher.what) in event_dict] with _batch_call_watchers(self_.self_or_cls, enable=watcher.queued, run=False): self_._execute_watcher(watcher, events) def set_dynamic_time_fn(self_,time_fn,sublistattr=None): """ Set time_fn for all Dynamic Parameters of this class or instance object that are currently being dynamically generated. Additionally, sets _Dynamic_time_fn=time_fn on this class or instance object, so that any future changes to Dynamic Parmeters can inherit time_fn (e.g. if a Number is changed from a float to a number generator, the number generator will inherit time_fn). If specified, sublistattr is the name of an attribute of this class or instance that contains an iterable collection of subobjects on which set_dynamic_time_fn should be called. If the attribute sublistattr is present on any of the subobjects, set_dynamic_time_fn() will be called for those, too. """ self_or_cls = self_.self_or_cls self_or_cls._Dynamic_time_fn = time_fn if isinstance(self_or_cls,type): a = (None,self_or_cls) else: a = (self_or_cls,) for n,p in self_or_cls.param.objects('existing').items(): if hasattr(p, '_value_is_dynamic'): if p._value_is_dynamic(*a): g = self_or_cls.param.get_value_generator(n) g._Dynamic_time_fn = time_fn if sublistattr: try: sublist = getattr(self_or_cls,sublistattr) except AttributeError: sublist = [] for obj in sublist: obj.param.set_dynamic_time_fn(time_fn,sublistattr) def serialize_parameters(self_, subset=None, mode='json'): self_or_cls = self_.self_or_cls if mode not in Parameter._serializers: raise ValueError('Mode %r not in available serialization formats %r' % (mode, list(Parameter._serializers.keys()))) serializer = Parameter._serializers[mode] return serializer.serialize_parameters(self_or_cls, subset=subset) def serialize_value(self_, pname, mode='json'): self_or_cls = self_.self_or_cls if mode not in Parameter._serializers: raise ValueError('Mode %r not in available serialization formats %r' % (mode, list(Parameter._serializers.keys()))) serializer = Parameter._serializers[mode] return serializer.serialize_parameter_value(self_or_cls, pname) def deserialize_parameters(self_, serialization, subset=None, mode='json'): self_or_cls = self_.self_or_cls serializer = Parameter._serializers[mode] return serializer.deserialize_parameters(self_or_cls, serialization, subset=subset) def deserialize_value(self_, pname, value, mode='json'): self_or_cls = self_.self_or_cls if mode not in Parameter._serializers: raise ValueError('Mode %r not in available serialization formats %r' % (mode, list(Parameter._serializers.keys()))) serializer = Parameter._serializers[mode] return serializer.deserialize_parameter_value(self_or_cls, pname, value) def schema(self_, safe=False, subset=None, mode='json'): """ Returns a schema for the parameters on this Parameterized object. """ self_or_cls = self_.self_or_cls if mode not in Parameter._serializers: raise ValueError('Mode %r not in available serialization formats %r' % (mode, list(Parameter._serializers.keys()))) serializer = Parameter._serializers[mode] return serializer.schema(self_or_cls, safe=safe, subset=subset) # PARAM2_DEPRECATION: Could be removed post param 2.0; same as values() but returns list, not dict def get_param_values(self_, onlychanged=False): """ (Deprecated; use .values() instead.) Return a list of name,value pairs for all Parameters of this object. When called on an instance with onlychanged set to True, will only return values that are not equal to the default value (onlychanged has no effect when called on a class). """ self_or_cls = self_.self_or_cls vals = [] for name, val in self_or_cls.param.objects('existing').items(): value = self_or_cls.param.get_value_generator(name) if not onlychanged or not all_equal(value, val.default): vals.append((name, value)) vals.sort(key=itemgetter(0)) return vals def values(self_, onlychanged=False): """ Return a dictionary of name,value pairs for the Parameters of this object. When called on an instance with onlychanged set to True, will only return values that are not equal to the default value (onlychanged has no effect when called on a class). """ # Defined in terms of get_param_values() to avoid ordering # issues in python2, but can be inverted if get_param_values # is removed when python2 support is dropped return dict(self_.get_param_values(onlychanged)) def force_new_dynamic_value(self_, name): # pylint: disable-msg=E0213 """ Force a new value to be generated for the dynamic attribute name, and return it. If name is not dynamic, its current value is returned (i.e. equivalent to getattr(name). """ cls_or_slf = self_.self_or_cls param_obj = cls_or_slf.param.objects('existing').get(name) if not param_obj: return getattr(cls_or_slf, name) cls, slf = None, None if isinstance(cls_or_slf,type): cls = cls_or_slf else: slf = cls_or_slf if not hasattr(param_obj,'_force'): return param_obj.__get__(slf, cls) else: return param_obj._force(slf, cls) def get_value_generator(self_,name): # pylint: disable-msg=E0213 """ Return the value or value-generating object of the named attribute. For most parameters, this is simply the parameter's value (i.e. the same as getattr()), but Dynamic parameters have their value-generating object returned. """ cls_or_slf = self_.self_or_cls param_obj = cls_or_slf.param.objects('existing').get(name) if not param_obj: value = getattr(cls_or_slf,name) # CompositeParameter detected by being a Parameter and having 'attribs' elif hasattr(param_obj,'attribs'): value = [cls_or_slf.param.get_value_generator(a) for a in param_obj.attribs] # not a Dynamic Parameter elif not hasattr(param_obj,'_value_is_dynamic'): value = getattr(cls_or_slf,name) # Dynamic Parameter... else: internal_name = "_%s_param_value"%name if hasattr(cls_or_slf,internal_name): # dealing with object and it's been set on this object value = getattr(cls_or_slf,internal_name) else: # dealing with class or isn't set on the object value = param_obj.default return value def inspect_value(self_,name): # pylint: disable-msg=E0213 """ Return the current value of the named attribute without modifying it. Same as getattr() except for Dynamic parameters, which have their last generated value returned. """ cls_or_slf = self_.self_or_cls param_obj = cls_or_slf.param.objects('existing').get(name) if not param_obj: value = getattr(cls_or_slf,name) elif hasattr(param_obj,'attribs'): value = [cls_or_slf.param.inspect_value(a) for a in param_obj.attribs] elif not hasattr(param_obj,'_inspect'): value = getattr(cls_or_slf,name) else: if isinstance(cls_or_slf,type): value = param_obj._inspect(None,cls_or_slf) else: value = param_obj._inspect(cls_or_slf,None) return value def method_dependencies(self_, name, intermediate=False): """ Given the name of a method, returns a PInfo object for each dependency of this method. See help(PInfo) for the contents of these objects. By default intermediate dependencies on sub-objects are not returned as these are primarily useful for internal use to determine when a sub-object dependency has to be updated. """ method = getattr(self_.self_or_cls, name) minfo = MInfo(cls=self_.cls, inst=self_.self, name=name, method=method) deps, dynamic = _params_depended_on( minfo, dynamic=False, intermediate=intermediate) if self_.self is None: return deps return _resolve_mcs_deps( self_.self, deps, dynamic, intermediate=intermediate) # PARAM2_DEPRECATION: Backwards compatibilitity for param<1.12 params_depended_on = method_dependencies def outputs(self_): """ Returns a mapping between any declared outputs and a tuple of the declared Parameter type, the output method, and the index into the output if multiple outputs are returned. """ outputs = {} for cls in classlist(self_.cls): for name in dir(cls): method = getattr(self_.self_or_cls, name) dinfo = getattr(method, '_dinfo', {}) if 'outputs' not in dinfo: continue for override, otype, idx in dinfo['outputs']: if override is not None: name = override outputs[name] = (otype, method, idx) return outputs def _spec_to_obj(self_, spec, dynamic=True, intermediate=True): """ Resolves a dependency specification into lists of explicit parameter dependencies and dynamic dependencies. Dynamic dependencies are specifications to be resolved when the sub-object whose parameters are being depended on is defined. During class creation dynamic=False which means sub-object dependencies are not resolved. At instance creation and whenever a sub-object is set on an object this method will be invoked to determine whether the dependency is available. For sub-object dependencies we also return dependencies for every part of the path, e.g. for a dependency specification like "a.b.c" we return dependencies for sub-object "a" and the sub-sub-object "b" in addition to the dependency on the actual parameter "c" on object "b". This is to ensure that if a sub-object is swapped out we are notified and can update the dynamic dependency to the new object. Even if a sub-object dependency can only partially resolved, e.g. if object "a" does not yet have a sub-object "b" we must watch for changes to "b" on sub-object "a" in case such a subobject is put in "b". """ if isinstance(spec, Parameter): inst = spec.owner if isinstance(spec.owner, Parameterized) else None cls = spec.owner if inst is None else type(inst) info = PInfo(inst=inst, cls=cls, name=spec.name, pobj=spec, what='value') return [] if intermediate == 'only' else [info], [] obj, attr, what = _parse_dependency_spec(spec) if obj is None: src = self_.self_or_cls elif not dynamic: return [], [DInfo(spec=spec)] else: src = _getattrr(self_.self_or_cls, obj[1::], None) if src is None: path = obj[1:].split('.') deps = [] # Attempt to partially resolve subobject path to ensure # that if a subobject is later updated making the full # subobject path available we have to be notified and # set up watchers if len(path) >= 1 and intermediate: sub_src = None subpath = path while sub_src is None and subpath: subpath = subpath[:-1] sub_src = _getattrr(self_.self_or_cls, '.'.join(subpath), None) if subpath: subdeps, _ = self_._spec_to_obj( '.'.join(path[:len(subpath)+1]), dynamic, intermediate) deps += subdeps return deps, [] if intermediate == 'only' else [DInfo(spec=spec)] cls, inst = (src, None) if isinstance(src, type) else (type(src), src) if attr == 'param': deps, dynamic_deps = self_._spec_to_obj(obj[1:], dynamic, intermediate) for p in src.param: param_deps, param_dynamic_deps = src.param._spec_to_obj(p, dynamic, intermediate) deps += param_deps dynamic_deps += param_dynamic_deps return deps, dynamic_deps elif attr in src.param: info = PInfo(inst=inst, cls=cls, name=attr, pobj=src.param[attr], what=what) elif hasattr(src, attr): info = MInfo(inst=inst, cls=cls, name=attr, method=getattr(src, attr)) elif src.abstract: return [], [] if intermediate == 'only' else [DInfo(spec=spec)] else: raise AttributeError("Attribute %r could not be resolved on %s." % (attr, src)) if obj is None or not intermediate: return [info], [] deps, dynamic_deps = self_._spec_to_obj(obj[1:], dynamic, intermediate) if intermediate != 'only': deps.append(info) return deps, dynamic_deps def _register_watcher(self_, action, watcher, what='value'): parameter_names = watcher.parameter_names for parameter_name in parameter_names: if parameter_name not in self_.cls.param: raise ValueError("%s parameter was not found in list of " "parameters of class %s" % (parameter_name, self_.cls.__name__)) if self_.self is not None and what == "value": watchers = self_.self._param_watchers if parameter_name not in watchers: watchers[parameter_name] = {} if what not in watchers[parameter_name]: watchers[parameter_name][what] = [] getattr(watchers[parameter_name][what], action)(watcher) else: watchers = self_[parameter_name].watchers if what not in watchers: watchers[what] = [] getattr(watchers[what], action)(watcher) def watch(self_, fn, parameter_names, what='value', onlychanged=True, queued=False, precedence=0): """ Register the given callback function `fn` to be invoked for events on the indicated parameters. `what`: What to watch on each parameter; either the value (by default) or else the indicated slot (e.g. 'constant'). `onlychanged`: By default, only invokes the function when the watched item changes, but if `onlychanged=False` also invokes it when the `what` item is set to its current value again. `queued`: By default, additional watcher events generated inside the callback fn are dispatched immediately, effectively doing depth-first processing of Watcher events. However, in certain scenarios, it is helpful to wait to dispatch such downstream events until all events that triggered this watcher have been processed. In such cases setting `queued=True` on this Watcher will queue up new downstream events generated during `fn` until `fn` completes and all other watchers invoked by that same event have finished executing), effectively doing breadth-first processing of Watcher events. `precedence`: Declares a precedence level for the Watcher that determines the priority with which the callback is executed. Lower precedence levels are executed earlier. Negative precedences are reserved for internal Watchers, i.e. those set up by param.depends. When the `fn` is called, it will be provided the relevant Event objects as positional arguments, which allows it to determine which of the possible triggering events occurred. Returns a Watcher object. See help(Watcher) and help(Event) for the contents of those objects. """ if precedence < 0: raise ValueError("User-defined watch callbacks must declare " "a positive precedence. Negative precedences " "are reserved for internal Watchers.") return self_._watch(fn, parameter_names, what, onlychanged, queued, precedence) def _watch(self_, fn, parameter_names, what='value', onlychanged=True, queued=False, precedence=-1): parameter_names = tuple(parameter_names) if isinstance(parameter_names, list) else (parameter_names,) watcher = Watcher(inst=self_.self, cls=self_.cls, fn=fn, mode='args', onlychanged=onlychanged, parameter_names=parameter_names, what=what, queued=queued, precedence=precedence) self_._register_watcher('append', watcher, what) return watcher def unwatch(self_, watcher): """ Remove the given Watcher object (from `watch` or `watch_values`) from this object's list. """ try: self_._register_watcher('remove', watcher, what=watcher.what) except Exception: self_.warning('No such watcher {watcher} to remove.'.format(watcher=str(watcher))) def watch_values(self_, fn, parameter_names, what='value', onlychanged=True, queued=False, precedence=0): """ Easier-to-use version of `watch` specific to watching for changes in parameter values. Only allows `what` to be 'value', and invokes the callback `fn` using keyword arguments = rather than with a list of Event objects. """ if precedence < 0: raise ValueError("User-defined watch callbacks must declare " "a positive precedence. Negative precedences " "are reserved for internal Watchers.") assert what == 'value' if isinstance(parameter_names, list): parameter_names = tuple(parameter_names) else: parameter_names = (parameter_names,) watcher = Watcher(inst=self_.self, cls=self_.cls, fn=fn, mode='kwargs', onlychanged=onlychanged, parameter_names=parameter_names, what=what, queued=queued, precedence=precedence) self_._register_watcher('append', watcher, what) return watcher # Instance methods # PARAM2_DEPRECATION: Backwards compatibilitity for param<1.12 def defaults(self_): """ Return {parameter_name:parameter.default} for all non-constant Parameters. Note that a Parameter for which instantiate==True has its default instantiated. """ self = self_.self d = {} for param_name, param in self.param.objects('existing').items(): if param.constant: pass if param.instantiate: self.param._instantiate_param(param, dict_=d, key=param_name) d[param_name] = param.default return d # Designed to avoid any processing unless the print # level is high enough, though not all callers of message(), # verbose(), debug(), etc are taking advantage of this. def __db_print(self_,level,msg,*args,**kw): """ Calls the logger returned by the get_logger() function, prepending the result of calling dbprint_prefix() (if any). See python's logging module for details. """ self_or_cls = self_.self_or_cls if get_logger(name=self_or_cls.name).isEnabledFor(level): if dbprint_prefix and callable(dbprint_prefix): msg = dbprint_prefix() + ": " + msg # pylint: disable-msg=E1102 get_logger(name=self_or_cls.name).log(level, msg, *args, **kw) # PARAM2_DEPRECATION: Backwards compatibilitity for param<1.12 def print_param_values(self_): """Print the values of all this object's Parameters.""" self = self_.self for name, val in self.param.values().items(): print('%s.%s = %s' % (self.name,name,val)) def warning(self_, msg,*args,**kw): """ Print msg merged with args as a warning, unless module variable warnings_as_exceptions is True, then raise an Exception containing the arguments. See Python's logging module for details of message formatting. """ self_.log(WARNING, msg, *args, **kw) # PARAM2_DEPRECATION: Could be removed post param 2.0 def message(self_,msg,*args,**kw): """ Print msg merged with args as a message. See Python's logging module for details of message formatting. """ self_.__db_print(INFO,msg,*args,**kw) # PARAM2_DEPRECATION: Could be removed post param 2.0 def verbose(self_,msg,*args,**kw): """ Print msg merged with args as a verbose message. See Python's logging module for details of message formatting. """ self_.__db_print(VERBOSE,msg,*args,**kw) # PARAM2_DEPRECATION: Could be removed post param 2.0 def debug(self_,msg,*args,**kw): """ Print msg merged with args as a debugging statement. See Python's logging module for details of message formatting. """ self_.__db_print(DEBUG,msg,*args,**kw) def log(self_, level, msg, *args, **kw): """ Print msg merged with args as a message at the indicated logging level. Logging levels include those provided by the Python logging module plus VERBOSE, either obtained directly from the logging module like `logging.INFO`, or from parameterized like `param.parameterized.INFO`. Supported logging levels include (in order of severity) DEBUG, VERBOSE, INFO, WARNING, ERROR, CRITICAL See Python's logging module for details of message formatting. """ if level is WARNING: if warnings_as_exceptions: raise Exception("Warning: " + msg % args) else: global warning_count warning_count+=1 self_.__db_print(level, msg, *args, **kw) def pprint(self_, imports=None, prefix=" ", unknown_value='', qualify=False, separator=""): """See Parameterized.pprint""" self = self_.self return self._pprint(imports, prefix, unknown_value, qualify, separator) class ParameterizedMetaclass(type): """ The metaclass of Parameterized (and all its descendents). The metaclass overrides type.__setattr__ to allow us to set Parameter values on classes without overwriting the attribute descriptor. That is, for a Parameterized class of type X with a Parameter y, the user can type X.y=3, which sets the default value of Parameter y to be 3, rather than overwriting y with the constant value 3 (and thereby losing all other info about that Parameter, such as the doc string, bounds, etc.). The __init__ method is used when defining a Parameterized class, usually when the module where that class is located is imported for the first time. That is, the __init__ in this metaclass initializes the *class* object, while the __init__ method defined in each Parameterized class is called for each new instance of that class. Additionally, a class can declare itself abstract by having an attribute __abstract set to True. The 'abstract' attribute can be used to find out if a class is abstract or not. """ def __init__(mcs, name, bases, dict_): """ Initialize the class object (not an instance of the class, but the class itself). Initializes all the Parameters by looking up appropriate default values (see __param_inheritance()) and setting attrib_names (see _set_names()). """ type.__init__(mcs, name, bases, dict_) # Give Parameterized classes a useful 'name' attribute. mcs.name = name mcs._parameters_state = { "BATCH_WATCH": False, # If true, Event and watcher objects are queued. "TRIGGER": False, "events": [], # Queue of batched events "watchers": [] # Queue of batched watchers } mcs._param = Parameters(mcs) # All objects (with their names) of type Parameter that are # defined in this class parameters = [(n, o) for (n, o) in dict_.items() if isinstance(o, Parameter)] mcs._param._parameters = dict(parameters) for param_name,param in parameters: mcs._initialize_parameter(param_name, param) # retrieve depends info from methods and store more conveniently dependers = [(n, m, m._dinfo) for (n, m) in dict_.items() if hasattr(m, '_dinfo')] _watch = [] for name, method, dinfo in dependers: watch = dinfo.get('watch', False) on_init = dinfo.get('on_init', False) if not watch: continue minfo = MInfo(cls=mcs, inst=None, name=name, method=method) deps, dynamic_deps = _params_depended_on(minfo, dynamic=False) _watch.append((name, watch == 'queued', on_init, deps, dynamic_deps)) # Resolve other dependencies in remainder of class hierarchy for cls in classlist(mcs)[:-1][::-1]: if not hasattr(cls, '_param'): continue for dep in cls.param._depends['watch']: method = getattr(mcs, dep[0], None) dinfo = getattr(method, '_dinfo', {'watch': False}) if (not any(dep[0] == w[0] for w in _watch) and dinfo.get('watch')): _watch.append(dep) mcs.param._depends = {'watch': _watch} if docstring_signature: mcs.__class_docstring_signature() def __class_docstring_signature(mcs, max_repr_len=15): """ Autogenerate a keyword signature in the class docstring for all available parameters. This is particularly useful in the IPython Notebook as IPython will parse this signature to allow tab-completion of keywords. max_repr_len: Maximum length (in characters) of value reprs. """ processed_kws, keyword_groups = set(), [] for cls in reversed(mcs.mro()): keyword_group = [] for (k,v) in sorted(cls.__dict__.items()): if isinstance(v, Parameter) and k not in processed_kws: param_type = v.__class__.__name__ keyword_group.append("%s=%s" % (k, param_type)) processed_kws.add(k) keyword_groups.append(keyword_group) keywords = [el for grp in reversed(keyword_groups) for el in grp] class_docstr = "\n"+mcs.__doc__ if mcs.__doc__ else '' signature = "params(%s)" % (", ".join(keywords)) description = param_pager(mcs) if (docstring_describe_params and param_pager) else '' mcs.__doc__ = signature + class_docstr + '\n' + description def _initialize_parameter(mcs,param_name,param): # A Parameter has no way to find out the name a # Parameterized class has for it param._set_names(param_name) mcs.__param_inheritance(param_name,param) # Should use the official Python 2.6+ abstract base classes; see # https://github.com/holoviz/param/issues/84 def __is_abstract(mcs): """ Return True if the class has an attribute __abstract set to True. Subclasses will return False unless they themselves have __abstract set to true. This mechanism allows a class to declare itself to be abstract (e.g. to avoid it being offered as an option in a GUI), without the "abstract" property being inherited by its subclasses (at least one of which is presumably not abstract). """ # Can't just do ".__abstract", because that is mangled to # _ParameterizedMetaclass__abstract before running, but # the actual class object will have an attribute # _ClassName__abstract. So, we have to mangle it ourselves at # runtime. Mangling follows description in # https://docs.python.org/2/tutorial/classes.html#private-variables-and-class-local-references try: return getattr(mcs,'_%s__abstract'%mcs.__name__.lstrip("_")) except AttributeError: return False abstract = property(__is_abstract) def _get_param(mcs): return mcs._param param = property(_get_param) def __setattr__(mcs, attribute_name, value): """ Implements 'self.attribute_name=value' in a way that also supports Parameters. If there is already a descriptor named attribute_name, and that descriptor is a Parameter, and the new value is *not* a Parameter, then call that Parameter's __set__ method with the specified value. In all other cases set the attribute normally (i.e. overwrite the descriptor). If the new value is a Parameter, once it has been set we make sure that the value is inherited from Parameterized superclasses as described in __param_inheritance(). """ # Find out if there's a Parameter called attribute_name as a # class attribute of this class - if not, parameter is None. parameter,owning_class = mcs.get_param_descriptor(attribute_name) if parameter and not isinstance(value,Parameter): if owning_class != mcs: parameter = copy.copy(parameter) parameter.owner = mcs type.__setattr__(mcs,attribute_name,parameter) mcs.__dict__[attribute_name].__set__(None,value) else: type.__setattr__(mcs,attribute_name,value) if isinstance(value,Parameter): mcs.__param_inheritance(attribute_name,value) elif isinstance(value,Parameters): pass else: # the purpose of the warning below is to catch # mistakes ("thinking you are setting a parameter, but # you're not"). There are legitimate times when # something needs be set on the class, and we don't # want to see a warning then. Such attributes should # presumably be prefixed by at least one underscore. # (For instance, python's own pickling mechanism # caches __slotnames__ on the class: # http://mail.python.org/pipermail/python-checkins/2003-February/033517.html.) # This warning bypasses the usual mechanisms, which # has have consequences for warning counts, warnings # as exceptions, etc. if not attribute_name.startswith('_'): get_logger().log(WARNING, "Setting non-Parameter class attribute %s.%s = %s ", mcs.__name__,attribute_name,repr(value)) def __param_inheritance(mcs,param_name,param): """ Look for Parameter values in superclasses of this Parameterized class. Ordinarily, when a Python object is instantiated, attributes not given values in the constructor will inherit the value given in the object's class, or in its superclasses. For Parameters owned by Parameterized classes, we have implemented an additional level of default lookup, should this ordinary lookup return only None. In such a case, i.e. when no non-None value was found for a Parameter by the usual inheritance mechanisms, we explicitly look for Parameters with the same name in superclasses of this Parameterized class, and use the first such value that we find. The goal is to be able to set the default value (or other slots) of a Parameter within a Parameterized class, just as we can set values for non-Parameter objects in Parameterized classes, and have the values inherited through the Parameterized hierarchy as usual. Note that instantiate is handled differently: if there is a parameter with the same name in one of the superclasses with instantiate set to True, this parameter will inherit instantiate=True. """ # get all relevant slots (i.e. slots defined in all # superclasses of this parameter) slots = {} for p_class in classlist(type(param))[1::]: slots.update(dict.fromkeys(p_class.__slots__)) # note for some eventual future: python 3.6+ descriptors grew # __set_name__, which could replace this and _set_names setattr(param,'owner',mcs) del slots['owner'] # backwards compatibility (see Composite parameter) if 'objtype' in slots: setattr(param,'objtype',mcs) del slots['objtype'] # instantiate is handled specially for superclass in classlist(mcs)[::-1]: super_param = superclass.__dict__.get(param_name) if isinstance(super_param, Parameter) and super_param.instantiate is True: param.instantiate=True del slots['instantiate'] for slot in slots.keys(): superclasses = iter(classlist(mcs)[::-1]) # Search up the hierarchy until param.slot (which has to # be obtained using getattr(param,slot)) is not None, or # we run out of classes to search. while getattr(param,slot) is None: try: param_super_class = next(superclasses) except StopIteration: break new_param = param_super_class.__dict__.get(param_name) if new_param is not None and hasattr(new_param,slot): # (slot might not be there because could be a more # general type of Parameter) new_value = getattr(new_param,slot) setattr(param,slot,new_value) def get_param_descriptor(mcs,param_name): """ Goes up the class hierarchy (starting from the current class) looking for a Parameter class attribute param_name. As soon as one is found as a class attribute, that Parameter is returned along with the class in which it is declared. """ classes = classlist(mcs) for c in classes[::-1]: attribute = c.__dict__.get(param_name) if isinstance(attribute,Parameter): return attribute,c return None,None # Whether script_repr should avoid reporting the values of parameters # that are just inheriting their values from the class defaults. # Because deepcopying creates a new object, cannot detect such # inheritance when instantiate = True, so such values will be printed # even if they are just being copied from the default. script_repr_suppress_defaults=True def script_repr(val, imports=None, prefix="\n ", settings=[], qualify=True, unknown_value=None, separator="\n", show_imports=True): """ Variant of pprint() designed for generating a (nearly) runnable script. The output of script_repr(parameterized_obj) is meant to be a string suitable for running using `python file.py`. Not every object is guaranteed to have a runnable script_repr representation, but it is meant to be a good starting point for generating a Python script that (after minor edits) can be evaluated to get a newly initialized object similar to the one provided. The new object will only have the same parameter state, not the same internal (attribute) state; the script_repr captures only the state of the Parameters of that object and not any other attributes it may have. If show_imports is True (default), includes import statements for each of the modules required for the objects being instantiated. This list may not be complete, as it typically includes only the imports needed for the Parameterized object itself, not for values that may have been supplied to Parameters. Apart from show_imports, accepts the same arguments as pprint(), so see pprint() for explanations of the arguments accepted. The default values of each of these arguments differ from pprint() in ways that are more suitable for saving as a separate script than for e.g. pretty-printing at the Python prompt. """ if imports is None: imports = [] rep = pprint(val, imports, prefix, settings, unknown_value, qualify, separator) imports = list(set(imports)) imports_str = ("\n".join(imports) + "\n\n") if show_imports else "" return imports_str + rep # PARAM2_DEPRECATION: Remove entirely unused settings argument def pprint(val,imports=None, prefix="\n ", settings=[], unknown_value='', qualify=False, separator=''): """ Pretty printed representation of a parameterized object that may be evaluated with eval. Similar to repr except introspection of the constructor (__init__) ensures a valid and succinct representation is generated. Only parameters are represented (whether specified as standard, positional, or keyword arguments). Parameters specified as positional arguments are always shown, followed by modified parameters specified as keyword arguments, sorted by precedence. unknown_value determines what to do where a representation cannot be generated for something required to recreate the object. Such things include non-parameter positional and keyword arguments, and certain values of parameters (e.g. some random state objects). Supplying an unknown_value of None causes unrepresentable things to be silently ignored. If unknown_value is a string, that string will appear in place of any unrepresentable things. If unknown_value is False, an Exception will be raised if an unrepresentable value is encountered. If supplied, imports should be a list, and it will be populated with the set of imports required for the object and all of its parameter values. If qualify is True, the class's path will be included (e.g. "a.b.C()"), otherwise only the class will appear ("C()"). Parameters will be separated by a comma only by default, but the separator parameter allows an additional separator to be supplied (e.g. a newline could be supplied to have each Parameter appear on a separate line). Instances of types that require special handling can use the script_repr_reg dictionary. Using the type as a key, add a function that returns a suitable representation of instances of that type, and adds the required import statement. The repr of a parameter can be suppressed by returning None from the appropriate hook in script_repr_reg. """ if imports is None: imports = [] if isinstance(val,type): rep = type_script_repr(val,imports,prefix,settings) elif type(val) in script_repr_reg: rep = script_repr_reg[type(val)](val,imports,prefix,settings) elif hasattr(val,'_pprint'): rep=val._pprint(imports=imports, prefix=prefix+" ", qualify=qualify, unknown_value=unknown_value, separator=separator) else: rep=repr(val) return rep # Registry for special handling for certain types in script_repr and pprint script_repr_reg = {} # currently only handles list and tuple def container_script_repr(container,imports,prefix,settings): result=[] for i in container: result.append(pprint(i,imports,prefix,settings)) ## (hack to get container brackets) if isinstance(container,list): d1,d2='[',']' elif isinstance(container,tuple): d1,d2='(',')' else: raise NotImplementedError rep=d1+','.join(result)+d2 # no imports to add for built-in types return rep def empty_script_repr(*args): # pyflakes:ignore (unused arguments): return None try: # Suppress scriptrepr for objects not yet having a useful string representation import numpy script_repr_reg[random.Random] = empty_script_repr script_repr_reg[numpy.random.RandomState] = empty_script_repr except ImportError: pass # Support added only if those libraries are available def function_script_repr(fn,imports,prefix,settings): name = fn.__name__ module = fn.__module__ imports.append('import %s'%module) return module+'.'+name def type_script_repr(type_,imports,prefix,settings): module = type_.__module__ if module!='__builtin__': imports.append('import %s'%module) return module+'.'+type_.__name__ script_repr_reg[list]=container_script_repr script_repr_reg[tuple]=container_script_repr script_repr_reg[FunctionType]=function_script_repr #: If not None, the value of this Parameter will be called (using '()') #: before every call to __db_print, and is expected to evaluate to a #: string that is suitable for prefixing messages and warnings (such #: as some indicator of the global state). dbprint_prefix=None # Copy of Python 3.2 reprlib's recursive_repr but allowing extra arguments if sys.version_info.major >= 3: from threading import get_ident def recursive_repr(fillvalue='...'): 'Decorator to make a repr function return fillvalue for a recursive call' def decorating_function(user_function): repr_running = set() def wrapper(self, *args, **kwargs): key = id(self), get_ident() if key in repr_running: return fillvalue repr_running.add(key) try: result = user_function(self, *args, **kwargs) finally: repr_running.discard(key) return result return wrapper return decorating_function else: def recursive_repr(fillvalue='...'): def decorating_function(user_function): return user_function return decorating_function @add_metaclass(ParameterizedMetaclass) class Parameterized(object): """ Base class for named objects that support Parameters and message formatting. Automatic object naming: Every Parameterized instance has a name parameter. If the user doesn't designate a name= argument when constructing the object, the object will be given a name consisting of its class name followed by a unique 5-digit number. Automatic parameter setting: The Parameterized __init__ method will automatically read the list of keyword parameters. If any keyword matches the name of a Parameter (see Parameter class) defined in the object's class or any of its superclasses, that parameter in the instance will get the value given as a keyword argument. For example: class Foo(Parameterized): xx = Parameter(default=1) foo = Foo(xx=20) in this case foo.xx gets the value 20. When initializing a Parameterized instance ('foo' in the example above), the values of parameters can be supplied as keyword arguments to the constructor (using parametername=parametervalue); these values will override the class default values for this one instance. If no 'name' parameter is supplied, self.name defaults to the object's class name with a unique number appended to it. Message formatting: Each Parameterized instance has several methods for optionally printing output. This functionality is based on the standard Python 'logging' module; using the methods provided here, wraps calls to the 'logging' module's root logger and prepends each message with information about the instance from which the call was made. For more information on how to set the global logging level and change the default message prefix, see documentation for the 'logging' module. """ name = String(default=None, constant=True, doc=""" String identifier for this object.""") def __init__(self, **params): global object_count # Flag that can be tested to see if e.g. constant Parameters # can still be set self.initialized = False self._parameters_state = { "BATCH_WATCH": False, # If true, Event and watcher objects are queued. "TRIGGER": False, "events": [], # Queue of batched events "watchers": [] # Queue of batched watchers } self._instance__params = {} self._param_watchers = {} self._dynamic_watchers = defaultdict(list) self.param._generate_name() self.param._setup_params(**params) object_count += 1 self.param._update_deps(init=True) self.initialized = True @property def param(self): return Parameters(self.__class__, self=self) # 'Special' methods def __getstate__(self): """ Save the object's state: return a dictionary that is a shallow copy of the object's __dict__ and that also includes the object's __slots__ (if it has any). """ # Unclear why this is a copy and not simply state.update(self.__dict__) state = self.__dict__.copy() for slot in get_occupied_slots(self): state[slot] = getattr(self,slot) # Note that Parameterized object pickling assumes that # attributes to be saved are only in __dict__ or __slots__ # (the standard Python places to store attributes, so that's a # reasonable assumption). (Additionally, class attributes that # are Parameters are also handled, even when they haven't been # instantiated - see PickleableClassAttributes.) return state def __setstate__(self, state): """ Restore objects from the state dictionary to this object. During this process the object is considered uninitialized. """ self.initialized=False # When making a copy the internal watchers have to be # recreated and point to the new instance if '_param_watchers' in state: param_watchers = state['_param_watchers'] for p, attrs in param_watchers.items(): for attr, watchers in attrs.items(): new_watchers = [] for watcher in watchers: watcher_args = list(watcher) if watcher.inst is not None: watcher_args[0] = self fn = watcher.fn if hasattr(fn, '_watcher_name'): watcher_args[2] = _m_caller(self, fn._watcher_name) elif get_method_owner(fn) is watcher.inst: watcher_args[2] = getattr(self, fn.__name__) new_watchers.append(Watcher(*watcher_args)) param_watchers[p][attr] = new_watchers if '_instance__params' not in state: state['_instance__params'] = {} if '_param_watchers' not in state: state['_param_watchers'] = {} state.pop('param', None) for name,value in state.items(): setattr(self,name,value) self.initialized=True @recursive_repr() def __repr__(self): """ Provide a nearly valid Python representation that could be used to recreate the item with its parameters, if executed in the appropriate environment. Returns 'classname(parameter1=x,parameter2=y,...)', listing all the parameters of this object. """ try: settings = ['%s=%s' % (name, repr(val)) # PARAM2_DEPRECATION: Update to self.param.values.items() # (once python2 support is dropped) for name, val in self.param.get_param_values()] except RuntimeError: # Handle recursion in parameter depth settings = [] return self.__class__.__name__ + "(" + ", ".join(settings) + ")" def __str__(self): """Return a short representation of the name and class of this object.""" return "<%s %s>" % (self.__class__.__name__,self.name) # PARAM2_DEPRECATION: Remove this compatibility alias for param 2.0 and later; use self.param.pprint instead def script_repr(self,imports=[],prefix=" "): """ Deprecated variant of __repr__ designed for generating a runnable script. """ return self.pprint(imports,prefix, unknown_value=None, qualify=True, separator="\n") @recursive_repr() def _pprint(self, imports=None, prefix=" ", unknown_value='', qualify=False, separator=""): """ (Experimental) Pretty printed representation that may be evaluated with eval. See pprint() function for more details. """ if imports is None: imports = [] # would have been simpler to use a set from the start imports[:] = list(set(imports)) # Generate import statement mod = self.__module__ bits = mod.split('.') imports.append("import %s"%mod) imports.append("import %s"%bits[0]) changed_params = self.param.values(onlychanged=script_repr_suppress_defaults) values = self.param.values() spec = getfullargspec(self.__init__) args = spec.args[1:] if spec.args[0] == 'self' else spec.args if spec.defaults is not None: posargs = spec.args[:-len(spec.defaults)] kwargs = dict(zip(spec.args[-len(spec.defaults):], spec.defaults)) else: posargs, kwargs = args, [] parameters = self.param.objects('existing') ordering = sorted( sorted(changed_params), # alphanumeric tie-breaker key=lambda k: (- float('inf') # No precedence is lowest possible precendence if parameters[k].precedence is None else parameters[k].precedence)) arglist, keywords, processed = [], [], [] for k in args + ordering: if k in processed: continue # Suppresses automatically generated names. if k == 'name' and (values[k] is not None and re.match('^'+self.__class__.__name__+'[0-9]+$', values[k])): continue value = pprint(values[k], imports, prefix=prefix,settings=[], unknown_value=unknown_value, qualify=qualify) if k in values else None if value is None: if unknown_value is False: raise Exception("%s: unknown value of %r" % (self.name,k)) elif unknown_value is None: # i.e. suppress repr continue else: value = unknown_value # Explicit kwarg (unchanged, known value) if (k in kwargs) and (k in values) and kwargs[k] == values[k]: continue if k in posargs: # value will be unknown_value unless k is a parameter arglist.append(value) elif (k in kwargs or (hasattr(spec, 'varkw') and (spec.varkw is not None)) or (hasattr(spec, 'keywords') and (spec.keywords is not None))): # Explicit modified keywords or parameters in # precendence order (if **kwargs present) keywords.append('%s=%s' % (k, value)) processed.append(k) qualifier = mod + '.' if qualify else '' arguments = arglist + keywords + (['**%s' % spec.varargs] if spec.varargs else []) return qualifier + '%s(%s)' % (self.__class__.__name__, (','+separator+prefix).join(arguments)) # PARAM2_DEPRECATION: Backwards compatibilitity for param<1.12 pprint = _pprint # Note that there's no state_push method on the class, so # dynamic parameters set on a class can't have state saved. This # is because, to do this, state_push() would need to be a # @bothmethod, but that complicates inheritance in cases where we # already have a state_push() method. # (isinstance(g,Parameterized) below is used to exclude classes.) def state_push(self): """ Save this instance's state. For Parameterized instances, this includes the state of dynamically generated values. Subclasses that maintain short-term state should additionally save and restore that state using state_push() and state_pop(). Generally, this method is used by operations that need to test something without permanently altering the objects' state. """ for pname, p in self.param.objects('existing').items(): g = self.param.get_value_generator(pname) if hasattr(g,'_Dynamic_last'): g._saved_Dynamic_last.append(g._Dynamic_last) g._saved_Dynamic_time.append(g._Dynamic_time) # CB: not storing the time_fn: assuming that doesn't # change. elif hasattr(g,'state_push') and isinstance(g,Parameterized): g.state_push() def state_pop(self): """ Restore the most recently saved state. See state_push() for more details. """ for pname, p in self.param.objects('existing').items(): g = self.param.get_value_generator(pname) if hasattr(g,'_Dynamic_last'): g._Dynamic_last = g._saved_Dynamic_last.pop() g._Dynamic_time = g._saved_Dynamic_time.pop() elif hasattr(g,'state_pop') and isinstance(g,Parameterized): g.state_pop() # API to be accessed via param namespace @classmethod @Parameters.deprecate def _add_parameter(cls, param_name,param_obj): return cls.param._add_parameter(param_name,param_obj) @bothmethod @Parameters.deprecate def params(cls,parameter_name=None): return cls.param.params(parameter_name=parameter_name) @classmethod @Parameters.deprecate def set_default(cls,param_name,value): return cls.param.set_default(param_name,value) @classmethod @Parameters.deprecate def print_param_defaults(cls): return cls.param.print_param_defaults() @bothmethod @Parameters.deprecate def set_param(self_or_cls,*args,**kwargs): return self_or_cls.param.set_param(*args,**kwargs) @bothmethod @Parameters.deprecate def set_dynamic_time_fn(self_or_cls,time_fn,sublistattr=None): return self_or_cls.param.set_dynamic_time_fn(time_fn,sublistattr=sublistattr) @bothmethod @Parameters.deprecate def get_param_values(self_or_cls,onlychanged=False): return self_or_cls.param.get_param_values(onlychanged=onlychanged) @bothmethod @Parameters.deprecate def force_new_dynamic_value(cls_or_slf,name): # pylint: disable-msg=E0213 return cls_or_slf.param.force_new_dynamic_value(name) @bothmethod @Parameters.deprecate def get_value_generator(cls_or_slf,name): # pylint: disable-msg=E0213 return cls_or_slf.param.get_value_generator(name) @bothmethod @Parameters.deprecate def inspect_value(cls_or_slf,name): # pylint: disable-msg=E0213 return cls_or_slf.param.inspect_value(name) @Parameters.deprecate def _set_name(self,name): return self.param._set_name(name) @Parameters.deprecate def __db_print(self,level,msg,*args,**kw): return self.param.__db_print(level,msg,*args,**kw) @Parameters.deprecate def warning(self,msg,*args,**kw): return self.param.warning(msg,*args,**kw) @Parameters.deprecate def message(self,msg,*args,**kw): return self.param.message(msg,*args,**kw) @Parameters.deprecate def verbose(self,msg,*args,**kw): return self.param.verbose(msg,*args,**kw) @Parameters.deprecate def debug(self,msg,*args,**kw): return self.param.debug(msg,*args,**kw) @Parameters.deprecate def print_param_values(self): return self.param.print_param_values() @Parameters.deprecate def defaults(self): return self.param.defaults() def print_all_param_defaults(): """Print the default values for all imported Parameters.""" print("_______________________________________________________________________________") print("") print(" Parameter Default Values") print("") classes = descendents(Parameterized) classes.sort(key=lambda x:x.__name__) for c in classes: c.print_param_defaults() print("_______________________________________________________________________________") # As of Python 2.6+, a fn's **args no longer has to be a # dictionary. This might allow us to use a decorator to simplify using # ParamOverrides (if that does indeed make them simpler to use). # http://docs.python.org/whatsnew/2.6.html class ParamOverrides(dict): """ A dictionary that returns the attribute of a specified object if that attribute is not present in itself. Used to override the parameters of an object. """ # NOTE: Attribute names of this object block parameters of the # same name, so all attributes of this object should have names # starting with an underscore (_). def __init__(self,overridden,dict_,allow_extra_keywords=False): """ If allow_extra_keywords is False, then all keys in the supplied dict_ must match parameter names on the overridden object (otherwise a warning will be printed). If allow_extra_keywords is True, then any items in the supplied dict_ that are not also parameters of the overridden object will be available via the extra_keywords() method. """ # This method should be fast because it's going to be # called a lot. This _might_ be faster (not tested): # def __init__(self,overridden,**kw): # ... # dict.__init__(self,**kw) self._overridden = overridden dict.__init__(self,dict_) if allow_extra_keywords: self._extra_keywords=self._extract_extra_keywords(dict_) else: self._check_params(dict_) def extra_keywords(self): """ Return a dictionary containing items from the originally supplied `dict_` whose names are not parameters of the overridden object. """ return self._extra_keywords def param_keywords(self): """ Return a dictionary containing items from the originally supplied `dict_` whose names are parameters of the overridden object (i.e. not extra keywords/parameters). """ return dict((key, self[key]) for key in self if key not in self.extra_keywords()) def __missing__(self,name): # Return 'name' from the overridden object return getattr(self._overridden,name) def __repr__(self): # As dict.__repr__, but indicate the overridden object return dict.__repr__(self)+" overriding params from %s"%repr(self._overridden) def __getattr__(self,name): # Provide 'dot' access to entries in the dictionary. # (This __getattr__ method is called only if 'name' isn't an # attribute of self.) return self.__getitem__(name) def __setattr__(self,name,val): # Attributes whose name starts with _ are set on self (as # normal), but all other attributes are inserted into the # dictionary. if not name.startswith('_'): self.__setitem__(name,val) else: dict.__setattr__(self,name,val) def get(self, key, default=None): try: return self[key] except KeyError: return default def __contains__(self, key): return key in self.__dict__ or key in self._overridden.param def _check_params(self,params): """ Print a warning if params contains something that is not a Parameter of the overridden object. """ overridden_object_params = list(self._overridden.param) for item in params: if item not in overridden_object_params: self.param.warning("'%s' will be ignored (not a Parameter).",item) def _extract_extra_keywords(self,params): """ Return any items in params that are not also parameters of the overridden object. """ extra_keywords = {} overridden_object_params = list(self._overridden.param) for name, val in params.items(): if name not in overridden_object_params: extra_keywords[name]=val # Could remove name from params (i.e. del params[name]) # so that it's only available via extra_keywords() return extra_keywords # Helper function required by ParameterizedFunction.__reduce__ def _new_parameterized(cls): return Parameterized.__new__(cls) class ParameterizedFunction(Parameterized): """ Acts like a Python function, but with arguments that are Parameters. Implemented as a subclass of Parameterized that, when instantiated, automatically invokes __call__ and returns the result, instead of returning an instance of the class. To obtain an instance of this class, call instance(). """ __abstract = True def __str__(self): return self.__class__.__name__+"()" @bothmethod def instance(self_or_cls,**params): """ Return an instance of this class, copying parameters from any existing instance provided. """ if isinstance (self_or_cls,ParameterizedMetaclass): cls = self_or_cls else: p = params params = self_or_cls.param.values() params.update(p) params.pop('name') cls = self_or_cls.__class__ inst=Parameterized.__new__(cls) Parameterized.__init__(inst,**params) if 'name' in params: inst.__name__ = params['name'] else: inst.__name__ = self_or_cls.name return inst def __new__(class_,*args,**params): # Create and __call__() an instance of this class. inst = class_.instance() inst.param._set_name(class_.__name__) return inst.__call__(*args,**params) def __call__(self,*args,**kw): raise NotImplementedError("Subclasses must implement __call__.") def __reduce__(self): # Control reconstruction (during unpickling and copying): # ensure that ParameterizedFunction.__new__ is skipped state = ParameterizedFunction.__getstate__(self) # Here it's necessary to use a function defined at the # module level rather than Parameterized.__new__ directly # because otherwise pickle will find .__new__'s module to be # __main__. Pretty obscure aspect of pickle.py... return (_new_parameterized,(self.__class__,),state) # PARAM2_DEPRECATION: Remove this compatibility alias for param 2.0 and later; use self.param.pprint instead def script_repr(self,imports=[],prefix=" "): """ Same as Parameterized.script_repr, except that X.classname(Y is replaced with X.classname.instance(Y """ return self.pprint(imports,prefix,unknown_value='',qualify=True, separator="\n") def _pprint(self, imports=None, prefix="\n ",unknown_value='', qualify=False, separator=""): """ Same as Parameterized._pprint, except that X.classname(Y is replaced with X.classname.instance(Y """ r = Parameterized._pprint(self,imports,prefix, unknown_value=unknown_value, qualify=qualify,separator=separator) classname=self.__class__.__name__ return r.replace(".%s("%classname,".%s.instance("%classname) class default_label_formatter(ParameterizedFunction): "Default formatter to turn parameter names into appropriate widget labels." capitalize = Parameter(default=True, doc=""" Whether or not the label should be capitalized.""") replace_underscores = Parameter(default=True, doc=""" Whether or not underscores should be replaced with spaces.""") overrides = Parameter(default={}, doc=""" Allows custom labels to be specified for specific parameter names using a dictionary where key is the parameter name and the value is the desired label.""") def __call__(self, pname): if pname in self.overrides: return self.overrides[pname] if self.replace_underscores: pname = pname.replace('_',' ') if self.capitalize: pname = pname[:1].upper() + pname[1:] return pname label_formatter = default_label_formatter # PARAM2_DEPRECATION: Should be able to remove this; was originally # adapted from OProperty from # infinitesque.net/articles/2005/enhancing%20Python's%20property.xhtml # but since python 2.6 the getter, setter, and deleter attributes of # a property should provide similar functionality already. class overridable_property(object): """ The same as Python's "property" attribute, but allows the accessor methods to be overridden in subclasses. """ # Delays looking up the accessors until they're needed, rather # than finding them when the class is first created. # Based on the emulation of PyProperty_Type() in Objects/descrobject.c def __init__(self, fget=None, fset=None, fdel=None, doc=None): self.fget = fget self.fset = fset self.fdel = fdel self.__doc__ = doc def __get__(self, obj, objtype=None): if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") if self.fget.__name__ == '' or not self.fget.__name__: return self.fget(obj) else: return getattr(obj, self.fget.__name__)() def __set__(self, obj, value): if self.fset is None: raise AttributeError("can't set attribute") if self.fset.__name__ == '' or not self.fset.__name__: self.fset(obj, value) else: getattr(obj, self.fset.__name__)(value) def __delete__(self, obj): if self.fdel is None: raise AttributeError("can't delete attribute") if self.fdel.__name__ == '' or not self.fdel.__name__: self.fdel(obj) else: getattr(obj, self.fdel.__name__)()