from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Dimension(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "parcats" _path_str = "parcats.dimension" _valid_props = { "categoryarray", "categoryarraysrc", "categoryorder", "displayindex", "label", "ticktext", "ticktextsrc", "values", "valuessrc", "visible", } # categoryarray # ------------- @property def categoryarray(self): """ Sets the order in which categories in this dimension appear. Only has an effect if `categoryorder` is set to "array". Used with `categoryorder`. The 'categoryarray' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["categoryarray"] @categoryarray.setter def categoryarray(self, val): self["categoryarray"] = val # categoryarraysrc # ---------------- @property def categoryarraysrc(self): """ Sets the source reference on Chart Studio Cloud for `categoryarray`. The 'categoryarraysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["categoryarraysrc"] @categoryarraysrc.setter def categoryarraysrc(self, val): self["categoryarraysrc"] = val # categoryorder # ------------- @property def categoryorder(self): """ Specifies the ordering logic for the categories in the dimension. By default, plotly uses "trace", which specifies the order that is present in the data supplied. Set `categoryorder` to *category ascending* or *category descending* if order should be determined by the alphanumerical order of the category names. Set `categoryorder` to "array" to derive the ordering from the attribute `categoryarray`. If a category is not found in the `categoryarray` array, the sorting behavior for that attribute will be identical to the "trace" mode. The unspecified categories will follow the categories in `categoryarray`. The 'categoryorder' property is an enumeration that may be specified as: - One of the following enumeration values: ['trace', 'category ascending', 'category descending', 'array'] Returns ------- Any """ return self["categoryorder"] @categoryorder.setter def categoryorder(self, val): self["categoryorder"] = val # displayindex # ------------ @property def displayindex(self): """ The display index of dimension, from left to right, zero indexed, defaults to dimension index. The 'displayindex' property is a integer and may be specified as: - An int (or float that will be cast to an int) Returns ------- int """ return self["displayindex"] @displayindex.setter def displayindex(self, val): self["displayindex"] = val # label # ----- @property def label(self): """ The shown name of the dimension. The 'label' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["label"] @label.setter def label(self, val): self["label"] = val # ticktext # -------- @property def ticktext(self): """ Sets alternative tick labels for the categories in this dimension. Only has an effect if `categoryorder` is set to "array". Should be an array the same length as `categoryarray` Used with `categoryorder`. The 'ticktext' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["ticktext"] @ticktext.setter def ticktext(self, val): self["ticktext"] = val # ticktextsrc # ----------- @property def ticktextsrc(self): """ Sets the source reference on Chart Studio Cloud for `ticktext`. The 'ticktextsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["ticktextsrc"] @ticktextsrc.setter def ticktextsrc(self, val): self["ticktextsrc"] = val # values # ------ @property def values(self): """ Dimension values. `values[n]` represents the category value of the `n`th point in the dataset, therefore the `values` vector for all dimensions must be the same (longer vectors will be truncated). The 'values' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["values"] @values.setter def values(self, val): self["values"] = val # valuessrc # --------- @property def valuessrc(self): """ Sets the source reference on Chart Studio Cloud for `values`. The 'valuessrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["valuessrc"] @valuessrc.setter def valuessrc(self, val): self["valuessrc"] = val # visible # ------- @property def visible(self): """ Shows the dimension when set to `true` (the default). Hides the dimension for `false`. The 'visible' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["visible"] @visible.setter def visible(self, val): self["visible"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ categoryarray Sets the order in which categories in this dimension appear. Only has an effect if `categoryorder` is set to "array". Used with `categoryorder`. categoryarraysrc Sets the source reference on Chart Studio Cloud for `categoryarray`. categoryorder Specifies the ordering logic for the categories in the dimension. By default, plotly uses "trace", which specifies the order that is present in the data supplied. Set `categoryorder` to *category ascending* or *category descending* if order should be determined by the alphanumerical order of the category names. Set `categoryorder` to "array" to derive the ordering from the attribute `categoryarray`. If a category is not found in the `categoryarray` array, the sorting behavior for that attribute will be identical to the "trace" mode. The unspecified categories will follow the categories in `categoryarray`. displayindex The display index of dimension, from left to right, zero indexed, defaults to dimension index. label The shown name of the dimension. ticktext Sets alternative tick labels for the categories in this dimension. Only has an effect if `categoryorder` is set to "array". Should be an array the same length as `categoryarray` Used with `categoryorder`. ticktextsrc Sets the source reference on Chart Studio Cloud for `ticktext`. values Dimension values. `values[n]` represents the category value of the `n`th point in the dataset, therefore the `values` vector for all dimensions must be the same (longer vectors will be truncated). valuessrc Sets the source reference on Chart Studio Cloud for `values`. visible Shows the dimension when set to `true` (the default). Hides the dimension for `false`. """ def __init__( self, arg=None, categoryarray=None, categoryarraysrc=None, categoryorder=None, displayindex=None, label=None, ticktext=None, ticktextsrc=None, values=None, valuessrc=None, visible=None, **kwargs ): """ Construct a new Dimension object The dimensions (variables) of the parallel categories diagram. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.parcats.Dimension` categoryarray Sets the order in which categories in this dimension appear. Only has an effect if `categoryorder` is set to "array". Used with `categoryorder`. categoryarraysrc Sets the source reference on Chart Studio Cloud for `categoryarray`. categoryorder Specifies the ordering logic for the categories in the dimension. By default, plotly uses "trace", which specifies the order that is present in the data supplied. Set `categoryorder` to *category ascending* or *category descending* if order should be determined by the alphanumerical order of the category names. Set `categoryorder` to "array" to derive the ordering from the attribute `categoryarray`. If a category is not found in the `categoryarray` array, the sorting behavior for that attribute will be identical to the "trace" mode. The unspecified categories will follow the categories in `categoryarray`. displayindex The display index of dimension, from left to right, zero indexed, defaults to dimension index. label The shown name of the dimension. ticktext Sets alternative tick labels for the categories in this dimension. Only has an effect if `categoryorder` is set to "array". Should be an array the same length as `categoryarray` Used with `categoryorder`. ticktextsrc Sets the source reference on Chart Studio Cloud for `ticktext`. values Dimension values. `values[n]` represents the category value of the `n`th point in the dataset, therefore the `values` vector for all dimensions must be the same (longer vectors will be truncated). valuessrc Sets the source reference on Chart Studio Cloud for `values`. visible Shows the dimension when set to `true` (the default). Hides the dimension for `false`. Returns ------- Dimension """ super(Dimension, self).__init__("dimensions") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.parcats.Dimension constructor must be a dict or an instance of :class:`plotly.graph_objs.parcats.Dimension`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("categoryarray", None) _v = categoryarray if categoryarray is not None else _v if _v is not None: self["categoryarray"] = _v _v = arg.pop("categoryarraysrc", None) _v = categoryarraysrc if categoryarraysrc is not None else _v if _v is not None: self["categoryarraysrc"] = _v _v = arg.pop("categoryorder", None) _v = categoryorder if categoryorder is not None else _v if _v is not None: self["categoryorder"] = _v _v = arg.pop("displayindex", None) _v = displayindex if displayindex is not None else _v if _v is not None: self["displayindex"] = _v _v = arg.pop("label", None) _v = label if label is not None else _v if _v is not None: self["label"] = _v _v = arg.pop("ticktext", None) _v = ticktext if ticktext is not None else _v if _v is not None: self["ticktext"] = _v _v = arg.pop("ticktextsrc", None) _v = ticktextsrc if ticktextsrc is not None else _v if _v is not None: self["ticktextsrc"] = _v _v = arg.pop("values", None) _v = values if values is not None else _v if _v is not None: self["values"] = _v _v = arg.pop("valuessrc", None) _v = valuessrc if valuessrc is not None else _v if _v is not None: self["valuessrc"] = _v _v = arg.pop("visible", None) _v = visible if visible is not None else _v if _v is not None: self["visible"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False