from __future__ import absolute_import, division import textwrap from copy import copy import six import os from distutils.version import LooseVersion from plotly import optional_imports from plotly.io._base_renderers import ( MimetypeRenderer, ExternalRenderer, PlotlyRenderer, NotebookRenderer, KaggleRenderer, AzureRenderer, ColabRenderer, JsonRenderer, PngRenderer, JpegRenderer, SvgRenderer, PdfRenderer, BrowserRenderer, IFrameRenderer, SphinxGalleryHtmlRenderer, SphinxGalleryOrcaRenderer, CoCalcRenderer, DatabricksRenderer, ) from plotly.io._utils import validate_coerce_fig_to_dict ipython = optional_imports.get_module("IPython") ipython_display = optional_imports.get_module("IPython.display") nbformat = optional_imports.get_module("nbformat") # Renderer configuration class # ----------------------------- class RenderersConfig(object): """ Singleton object containing the current renderer configurations """ def __init__(self): self._renderers = {} self._default_name = None self._default_renderers = [] self._render_on_display = False self._to_activate = [] # ### Magic methods ### # Make this act as a dict of renderers def __len__(self): return len(self._renderers) def __contains__(self, item): return item in self._renderers def __iter__(self): return iter(self._renderers) def __getitem__(self, item): renderer = self._renderers[item] return renderer def __setitem__(self, key, value): if not isinstance(value, (MimetypeRenderer, ExternalRenderer)): raise ValueError( """\ Renderer must be a subclass of MimetypeRenderer or ExternalRenderer. Received value with type: {typ}""".format( typ=type(value) ) ) self._renderers[key] = value def __delitem__(self, key): # Remove template del self._renderers[key] # Check if we need to remove it as the default if self._default == key: self._default = None def keys(self): return self._renderers.keys() def items(self): return self._renderers.items() def update(self, d={}, **kwargs): """ Update one or more renderers from a dict or from input keyword arguments. Parameters ---------- d: dict Dictionary from renderer names to new renderer objects. kwargs Named argument value pairs where the name is a renderer name and the value is a new renderer object """ for k, v in dict(d, **kwargs).items(): self[k] = v # ### Properties ### @property def default(self): """ The default renderer, or None if no there is no default If not None, the default renderer is used to render figures when the `plotly.io.show` function is called on a Figure. If `plotly.io.renderers.render_on_display` is True, then the default renderer will also be used to display Figures automatically when displayed in the Jupyter Notebook Multiple renderers may be registered by separating their names with '+' characters. For example, to specify rendering compatible with the classic Jupyter Notebook, JupyterLab, and PDF export: >>> import plotly.io as pio >>> pio.renderers.default = 'notebook+jupyterlab+pdf' The names of available renderers may be retrieved with: >>> import plotly.io as pio >>> list(pio.renderers) Returns ------- str """ return self._default_name @default.setter def default(self, value): # Handle None if not value: # _default_name should always be a string so we can do # pio.renderers.default.split('+') self._default_name = "" self._default_renderers = [] return # Store defaults name and list of renderer(s) renderer_names = self._validate_coerce_renderers(value) self._default_name = value self._default_renderers = [self[name] for name in renderer_names] # Register renderers for activation before their next use self._to_activate = list(self._default_renderers) @property def render_on_display(self): """ If True, the default mimetype renderers will be used to render figures when they are displayed in an IPython context. Returns ------- bool """ return self._render_on_display @render_on_display.setter def render_on_display(self, val): self._render_on_display = bool(val) def _activate_pending_renderers(self, cls=object): """ Activate all renderers that are waiting in the _to_activate list Parameters ---------- cls Only activate renders that are subclasses of this class """ to_activate_with_cls = [ r for r in self._to_activate if cls and isinstance(r, cls) ] while to_activate_with_cls: # Activate renderers from left to right so that right-most # renderers take precedence renderer = to_activate_with_cls.pop(0) renderer.activate() self._to_activate = [ r for r in self._to_activate if not (cls and isinstance(r, cls)) ] def _validate_coerce_renderers(self, renderers_string): """ Input a string and validate that it contains the names of one or more valid renderers separated on '+' characters. If valid, return a list of the renderer names Parameters ---------- renderers_string: str Returns ------- list of str """ # Validate value if not isinstance(renderers_string, six.string_types): raise ValueError("Renderer must be specified as a string") renderer_names = renderers_string.split("+") invalid = [name for name in renderer_names if name not in self] if invalid: raise ValueError( """ Invalid named renderer(s) received: {}""".format( str(invalid) ) ) return renderer_names def __repr__(self): return """\ Renderers configuration ----------------------- Default renderer: {default} Available renderers: {available} """.format( default=repr(self.default), available=self._available_renderers_str() ) def _available_renderers_str(self): """ Return nicely wrapped string representation of all available renderer names """ available = "\n".join( textwrap.wrap( repr(list(self)), width=79 - 8, initial_indent=" " * 8, subsequent_indent=" " * 9, ) ) return available def _build_mime_bundle(self, fig_dict, renderers_string=None, **kwargs): """ Build a mime bundle dict containing a kev/value pair for each MimetypeRenderer specified in either the default renderer string, or in the supplied renderers_string argument. Note that this method skips any renderers that are not subclasses of MimetypeRenderer. Parameters ---------- fig_dict: dict Figure dictionary renderers_string: str or None (default None) Renderer string to process rather than the current default renderer string Returns ------- dict """ if renderers_string: renderer_names = self._validate_coerce_renderers(renderers_string) renderers_list = [self[name] for name in renderer_names] # Activate these non-default renderers for renderer in renderers_list: if isinstance(renderer, MimetypeRenderer): renderer.activate() else: # Activate any pending default renderers self._activate_pending_renderers(cls=MimetypeRenderer) renderers_list = self._default_renderers bundle = {} for renderer in renderers_list: if isinstance(renderer, MimetypeRenderer): renderer = copy(renderer) for k, v in kwargs.items(): if hasattr(renderer, k): setattr(renderer, k, v) bundle.update(renderer.to_mimebundle(fig_dict)) return bundle def _perform_external_rendering(self, fig_dict, renderers_string=None, **kwargs): """ Perform external rendering for each ExternalRenderer specified in either the default renderer string, or in the supplied renderers_string argument. Note that this method skips any renderers that are not subclasses of ExternalRenderer. Parameters ---------- fig_dict: dict Figure dictionary renderers_string: str or None (default None) Renderer string to process rather than the current default renderer string Returns ------- None """ if renderers_string: renderer_names = self._validate_coerce_renderers(renderers_string) renderers_list = [self[name] for name in renderer_names] # Activate these non-default renderers for renderer in renderers_list: if isinstance(renderer, ExternalRenderer): renderer.activate() else: self._activate_pending_renderers(cls=ExternalRenderer) renderers_list = self._default_renderers for renderer in renderers_list: if isinstance(renderer, ExternalRenderer): renderer = copy(renderer) for k, v in kwargs.items(): if hasattr(renderer, k): setattr(renderer, k, v) renderer.render(fig_dict) # Make renderers a singleton object # --------------------------------- renderers = RenderersConfig() del RenderersConfig # Show def show(fig, renderer=None, validate=True, **kwargs): """ Show a figure using either the default renderer(s) or the renderer(s) specified by the renderer argument Parameters ---------- fig: dict of Figure The Figure object or figure dict to display renderer: str or None (default None) A string containing the names of one or more registered renderers (separated by '+' characters) or None. If None, then the default renderers specified in plotly.io.renderers.default are used. validate: bool (default True) True if the figure should be validated before being shown, False otherwise. width: int or float An integer or float that determines the number of pixels wide the plot is. The default is set in plotly.js. height: int or float An integer or float that determines the number of pixels wide the plot is. The default is set in plotly.js. config: dict A dict of parameters to configure the figure. The defaults are set in plotly.js. Returns ------- None """ fig_dict = validate_coerce_fig_to_dict(fig, validate) # Mimetype renderers bundle = renderers._build_mime_bundle(fig_dict, renderers_string=renderer, **kwargs) if bundle: if not ipython_display: raise ValueError( "Mime type rendering requires ipython but it is not installed" ) if not nbformat or LooseVersion(nbformat.__version__) < LooseVersion("4.2.0"): raise ValueError( "Mime type rendering requires nbformat>=4.2.0 but it is not installed" ) ipython_display.display(bundle, raw=True) # external renderers renderers._perform_external_rendering(fig_dict, renderers_string=renderer, **kwargs) # Register renderers # ------------------ # Plotly mime type plotly_renderer = PlotlyRenderer() renderers["plotly_mimetype"] = plotly_renderer renderers["jupyterlab"] = plotly_renderer renderers["nteract"] = plotly_renderer renderers["vscode"] = plotly_renderer # HTML-based config = {} renderers["notebook"] = NotebookRenderer(config=config) renderers["notebook_connected"] = NotebookRenderer(config=config, connected=True) renderers["kaggle"] = KaggleRenderer(config=config) renderers["azure"] = AzureRenderer(config=config) renderers["colab"] = ColabRenderer(config=config) renderers["cocalc"] = CoCalcRenderer() renderers["databricks"] = DatabricksRenderer() # JSON renderers["json"] = JsonRenderer() # Static Image renderers["png"] = PngRenderer() jpeg_renderer = JpegRenderer() renderers["jpeg"] = jpeg_renderer renderers["jpg"] = jpeg_renderer renderers["svg"] = SvgRenderer() renderers["pdf"] = PdfRenderer() # External renderers["browser"] = BrowserRenderer(config=config) renderers["firefox"] = BrowserRenderer(config=config, using=("firefox")) renderers["chrome"] = BrowserRenderer(config=config, using=("chrome", "google-chrome")) renderers["chromium"] = BrowserRenderer( config=config, using=("chromium", "chromium-browser") ) renderers["iframe"] = IFrameRenderer(config=config, include_plotlyjs=True) renderers["iframe_connected"] = IFrameRenderer(config=config, include_plotlyjs="cdn") renderers["sphinx_gallery"] = SphinxGalleryHtmlRenderer() renderers["sphinx_gallery_png"] = SphinxGalleryOrcaRenderer() # Set default renderer # -------------------- # Version 4 renderer configuration default_renderer = None # Handle the PLOTLY_RENDERER environment variable env_renderer = os.environ.get("PLOTLY_RENDERER", None) if env_renderer: try: renderers._validate_coerce_renderers(env_renderer) except ValueError: raise ValueError( """ Invalid named renderer(s) specified in the 'PLOTLY_RENDERER' environment variable: {env_renderer}""".format( env_renderer=env_renderer ) ) default_renderer = env_renderer elif ipython and ipython.get_ipython(): # Try to detect environment so that we can enable a useful # default renderer if not default_renderer: try: import google.colab default_renderer = "colab" except ImportError: pass # Check if we're running in a Kaggle notebook if not default_renderer and os.path.exists("/kaggle/input"): default_renderer = "kaggle" # Check if we're running in an Azure Notebook if not default_renderer and "AZURE_NOTEBOOKS_HOST" in os.environ: default_renderer = "azure" # Check if we're running in VSCode if not default_renderer and "VSCODE_PID" in os.environ: default_renderer = "vscode" # Check if we're running in nteract if not default_renderer and "NTERACT_EXE" in os.environ: default_renderer = "nteract" # Check if we're running in CoCalc if not default_renderer and "COCALC_PROJECT_ID" in os.environ: default_renderer = "cocalc" if not default_renderer and "DATABRICKS_RUNTIME_VERSION" in os.environ: default_renderer = "databricks" # Check if we're running in spyder and orca is installed if not default_renderer and "SPYDER_ARGS" in os.environ: try: from plotly.io.orca import validate_executable validate_executable() default_renderer = "svg" except ValueError: # orca not found pass # Check if we're running in ipython terminal if not default_renderer and ( ipython.get_ipython().__class__.__name__ == "TerminalInteractiveShell" ): default_renderer = "browser" # Fallback to renderer combination that will work automatically # in the classic notebook (offline), jupyterlab, nteract, vscode, and # nbconvert HTML export. if not default_renderer: default_renderer = "plotly_mimetype+notebook" else: # If ipython isn't available, try to display figures in the default # browser import webbrowser try: webbrowser.get() default_renderer = "browser" except webbrowser.Error: # Default browser could not be loaded pass renderers.render_on_display = True renderers.default = default_renderer