import re from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Tuple, Union from prompt_toolkit.document import Document from prompt_toolkit.filters import FilterOrBool, to_filter from prompt_toolkit.formatted_text import AnyFormattedText, StyleAndTextTuples from .base import CompleteEvent, Completer, Completion from .word_completer import WordCompleter __all__ = [ "FuzzyCompleter", "FuzzyWordCompleter", ] class FuzzyCompleter(Completer): """ Fuzzy completion. This wraps any other completer and turns it into a fuzzy completer. If the list of words is: ["leopard" , "gorilla", "dinosaur", "cat", "bee"] Then trying to complete "oar" would yield "leopard" and "dinosaur", but not the others, because they match the regular expression 'o.*a.*r'. Similar, in another application "djm" could expand to "django_migrations". The results are sorted by relevance, which is defined as the start position and the length of the match. Notice that this is not really a tool to work around spelling mistakes, like what would be possible with difflib. The purpose is rather to have a quicker or more intuitive way to filter the given completions, especially when many completions have a common prefix. Fuzzy algorithm is based on this post: https://blog.amjith.com/fuzzyfinder-in-10-lines-of-python :param completer: A :class:`~.Completer` instance. :param WORD: When True, use WORD characters. :param pattern: Regex pattern which selects the characters before the cursor that are considered for the fuzzy matching. :param enable_fuzzy: (bool or `Filter`) Enabled the fuzzy behavior. For easily turning fuzzyness on or off according to a certain condition. """ def __init__( self, completer: Completer, WORD: bool = False, pattern: Optional[str] = None, enable_fuzzy: FilterOrBool = True, ): assert pattern is None or pattern.startswith("^") self.completer = completer self.pattern = pattern self.WORD = WORD self.pattern = pattern self.enable_fuzzy = to_filter(enable_fuzzy) def get_completions( self, document: Document, complete_event: CompleteEvent ) -> Iterable[Completion]: if self.enable_fuzzy(): return self._get_fuzzy_completions(document, complete_event) else: return self.completer.get_completions(document, complete_event) def _get_pattern(self) -> str: if self.pattern: return self.pattern if self.WORD: return r"[^\s]+" return "^[a-zA-Z0-9_]*" def _get_fuzzy_completions( self, document: Document, complete_event: CompleteEvent ) -> Iterable[Completion]: word_before_cursor = document.get_word_before_cursor( pattern=re.compile(self._get_pattern()) ) # Get completions document2 = Document( text=document.text[: document.cursor_position - len(word_before_cursor)], cursor_position=document.cursor_position - len(word_before_cursor), ) completions = list(self.completer.get_completions(document2, complete_event)) fuzzy_matches: List[_FuzzyMatch] = [] pat = ".*?".join(map(re.escape, word_before_cursor)) pat = "(?=({0}))".format(pat) # lookahead regex to manage overlapping matches regex = re.compile(pat, re.IGNORECASE) for compl in completions: matches = list(regex.finditer(compl.text)) if matches: # Prefer the match, closest to the left, then shortest. best = min(matches, key=lambda m: (m.start(), len(m.group(1)))) fuzzy_matches.append( _FuzzyMatch(len(best.group(1)), best.start(), compl) ) def sort_key(fuzzy_match: "_FuzzyMatch") -> Tuple[int, int]: "Sort by start position, then by the length of the match." return fuzzy_match.start_pos, fuzzy_match.match_length fuzzy_matches = sorted(fuzzy_matches, key=sort_key) for match in fuzzy_matches: # Include these completions, but set the correct `display` # attribute and `start_position`. yield Completion( match.completion.text, start_position=match.completion.start_position - len(word_before_cursor), display_meta=match.completion.display_meta, display=self._get_display(match, word_before_cursor), style=match.completion.style, ) def _get_display( self, fuzzy_match: "_FuzzyMatch", word_before_cursor: str ) -> AnyFormattedText: """ Generate formatted text for the display label. """ m = fuzzy_match word = m.completion.text if m.match_length == 0: # No highlighting when we have zero length matches (no input text). # In this case, use the original display text (which can include # additional styling or characters). return m.completion.display result: StyleAndTextTuples = [] # Text before match. result.append(("class:fuzzymatch.outside", word[: m.start_pos])) # The match itself. characters = list(word_before_cursor) for c in word[m.start_pos : m.start_pos + m.match_length]: classname = "class:fuzzymatch.inside" if characters and c.lower() == characters[0].lower(): classname += ".character" del characters[0] result.append((classname, c)) # Text after match. result.append( ("class:fuzzymatch.outside", word[m.start_pos + m.match_length :]) ) return result class FuzzyWordCompleter(Completer): """ Fuzzy completion on a list of words. (This is basically a `WordCompleter` wrapped in a `FuzzyCompleter`.) :param words: List of words or callable that returns a list of words. :param meta_dict: Optional dict mapping words to their meta-information. :param WORD: When True, use WORD characters. """ def __init__( self, words: Union[List[str], Callable[[], List[str]]], meta_dict: Optional[Dict[str, str]] = None, WORD: bool = False, ) -> None: self.words = words self.meta_dict = meta_dict or {} self.WORD = WORD self.word_completer = WordCompleter( words=self.words, WORD=self.WORD, meta_dict=self.meta_dict ) self.fuzzy_completer = FuzzyCompleter(self.word_completer, WORD=self.WORD) def get_completions( self, document: Document, complete_event: CompleteEvent ) -> Iterable[Completion]: return self.fuzzy_completer.get_completions(document, complete_event) _FuzzyMatch = NamedTuple( "_FuzzyMatch", [("match_length", int), ("start_pos", int), ("completion", Completion)], )