import numpy as np from .._shared.filters import gaussian def binary_blobs(length=512, blob_size_fraction=0.1, n_dim=2, volume_fraction=0.5, seed=None): """ Generate synthetic binary image with several rounded blob-like objects. Parameters ---------- length : int, optional Linear size of output image. blob_size_fraction : float, optional Typical linear size of blob, as a fraction of ``length``, should be smaller than 1. n_dim : int, optional Number of dimensions of output image. volume_fraction : float, default 0.5 Fraction of image pixels covered by the blobs (where the output is 1). Should be in [0, 1]. seed : {None, int, `numpy.random.Generator`}, optional If `seed` is None the `numpy.random.Generator` singleton is used. If `seed` is an int, a new ``Generator`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` instance then that instance is used. Returns ------- blobs : ndarray of bools Output binary image Examples -------- >>> from skimage import data >>> data.binary_blobs(length=5, blob_size_fraction=0.2) # doctest: +SKIP array([[ True, False, True, True, True], [ True, True, True, False, True], [False, True, False, True, True], [ True, False, False, True, True], [ True, False, False, False, True]]) >>> blobs = data.binary_blobs(length=256, blob_size_fraction=0.1) >>> # Finer structures >>> blobs = data.binary_blobs(length=256, blob_size_fraction=0.05) >>> # Blobs cover a smaller volume fraction of the image >>> blobs = data.binary_blobs(length=256, volume_fraction=0.3) """ # filters is quite an expensive import since it imports all of scipy.signal # We lazy import here rs = np.random.default_rng(seed) shape = tuple([length] * n_dim) mask = np.zeros(shape) n_pts = max(int(1. / blob_size_fraction) ** n_dim, 1) points = (length * rs.random((n_dim, n_pts))).astype(int) mask[tuple(indices for indices in points)] = 1 mask = gaussian(mask, sigma=0.25 * length * blob_size_fraction, preserve_range=False) threshold = np.percentile(mask, 100 * (1 - volume_fraction)) return np.logical_not(mask < threshold)