""" Adapted code from "Contrast Limited Adaptive Histogram Equalization" by Karel Zuiderveld , Graphics Gems IV, Academic Press, 1994. http://tog.acm.org/resources/GraphicsGems/ The Graphics Gems code is copyright-protected. In other words, you cannot claim the text of the code as your own and resell it. Using the code is permitted in any program, product, or library, non-commercial or commercial. Giving credit is not required, though is a nice gesture. The code comes as-is, and if there are any flaws or problems with any Gems code, nobody involved with Gems - authors, editors, publishers, or webmasters - are to be held responsible. Basically, don't be a jerk, and remember that anything free comes with no guarantee. """ import numbers import numpy as np from .._shared.utils import _supported_float_type from ..color.adapt_rgb import adapt_rgb, hsv_value from ..exposure import rescale_intensity from ..util import img_as_uint NR_OF_GRAY = 2 ** 14 # number of grayscale levels to use in CLAHE algorithm @adapt_rgb(hsv_value) def equalize_adapthist(image, kernel_size=None, clip_limit=0.01, nbins=256): """Contrast Limited Adaptive Histogram Equalization (CLAHE). An algorithm for local contrast enhancement, that uses histograms computed over different tile regions of the image. Local details can therefore be enhanced even in regions that are darker or lighter than most of the image. Parameters ---------- image : (N1, ...,NN[, C]) ndarray Input image. kernel_size : int or array_like, optional Defines the shape of contextual regions used in the algorithm. If iterable is passed, it must have the same number of elements as ``image.ndim`` (without color channel). If integer, it is broadcasted to each `image` dimension. By default, ``kernel_size`` is 1/8 of ``image`` height by 1/8 of its width. clip_limit : float, optional Clipping limit, normalized between 0 and 1 (higher values give more contrast). nbins : int, optional Number of gray bins for histogram ("data range"). Returns ------- out : (N1, ...,NN[, C]) ndarray Equalized image with float64 dtype. See Also -------- equalize_hist, rescale_intensity Notes ----- * For color images, the following steps are performed: - The image is converted to HSV color space - The CLAHE algorithm is run on the V (Value) channel - The image is converted back to RGB space and returned * For RGBA images, the original alpha channel is removed. .. versionchanged:: 0.17 The values returned by this function are slightly shifted upwards because of an internal change in rounding behavior. References ---------- .. [1] http://tog.acm.org/resources/GraphicsGems/ .. [2] https://en.wikipedia.org/wiki/CLAHE#CLAHE """ float_dtype = _supported_float_type(image.dtype) image = img_as_uint(image) image = np.round( rescale_intensity(image, out_range=(0, NR_OF_GRAY - 1)) ).astype(np.min_scalar_type(NR_OF_GRAY)) if kernel_size is None: kernel_size = tuple([max(s // 8, 1) for s in image.shape]) elif isinstance(kernel_size, numbers.Number): kernel_size = (kernel_size,) * image.ndim elif len(kernel_size) != image.ndim: ValueError(f'Incorrect value of `kernel_size`: {kernel_size}') kernel_size = [int(k) for k in kernel_size] image = _clahe(image, kernel_size, clip_limit, nbins) image = image.astype(float_dtype, copy=False) return rescale_intensity(image) def _clahe(image, kernel_size, clip_limit, nbins): """Contrast Limited Adaptive Histogram Equalization. Parameters ---------- image : (N1,...,NN) ndarray Input image. kernel_size : int or N-tuple of int Defines the shape of contextual regions used in the algorithm. clip_limit : float Normalized clipping limit between 0 and 1 (higher values give more contrast). nbins : int Number of gray bins for histogram ("data range"). Returns ------- out : (N1,...,NN) ndarray Equalized image. The number of "effective" graylevels in the output image is set by `nbins`; selecting a small value (e.g. 128) speeds up processing and still produces an output image of good quality. A clip limit of 0 or larger than or equal to 1 results in standard (non-contrast limited) AHE. """ ndim = image.ndim dtype = image.dtype # pad the image such that the shape in each dimension # - is a multiple of the kernel_size and # - is preceded by half a kernel size pad_start_per_dim = [k // 2 for k in kernel_size] pad_end_per_dim = [(k - s % k) % k + int(np.ceil(k / 2.)) for k, s in zip(kernel_size, image.shape)] image = np.pad(image, [[p_i, p_f] for p_i, p_f in zip(pad_start_per_dim, pad_end_per_dim)], mode='reflect') # determine gray value bins bin_size = 1 + NR_OF_GRAY // nbins lut = np.arange(NR_OF_GRAY, dtype=np.min_scalar_type(NR_OF_GRAY)) lut //= bin_size image = lut[image] # calculate graylevel mappings for each contextual region # rearrange image into flattened contextual regions ns_hist = [int(s / k) - 1 for s, k in zip(image.shape, kernel_size)] hist_blocks_shape = np.array([ns_hist, kernel_size]).T.flatten() hist_blocks_axis_order = np.array([np.arange(0, ndim * 2, 2), np.arange(1, ndim * 2, 2)]).flatten() hist_slices = [slice(k // 2, k // 2 + n * k) for k, n in zip(kernel_size, ns_hist)] hist_blocks = image[tuple(hist_slices)].reshape(hist_blocks_shape) hist_blocks = np.transpose(hist_blocks, axes=hist_blocks_axis_order) hist_block_assembled_shape = hist_blocks.shape hist_blocks = hist_blocks.reshape((np.product(ns_hist), -1)) # Calculate actual clip limit if clip_limit > 0.0: clim = int(np.clip(clip_limit * np.product(kernel_size), 1, None)) else: # largest possible value, i.e., do not clip (AHE) clim = np.product(kernel_size) hist = np.apply_along_axis(np.bincount, -1, hist_blocks, minlength=nbins) hist = np.apply_along_axis(clip_histogram, -1, hist, clip_limit=clim) hist = map_histogram(hist, 0, NR_OF_GRAY - 1, np.product(kernel_size)) hist = hist.reshape(hist_block_assembled_shape[:ndim] + (-1,)) # duplicate leading mappings in each dim map_array = np.pad(hist, [[1, 1] for _ in range(ndim)] + [[0, 0]], mode='edge') # Perform multilinear interpolation of graylevel mappings # using the convention described here: # https://en.wikipedia.org/w/index.php?title=Adaptive_histogram_ # equalization&oldid=936814673#Efficient_computation_by_interpolation # rearrange image into blocks for vectorized processing ns_proc = [int(s / k) for s, k in zip(image.shape, kernel_size)] blocks_shape = np.array([ns_proc, kernel_size]).T.flatten() blocks_axis_order = np.array([np.arange(0, ndim * 2, 2), np.arange(1, ndim * 2, 2)]).flatten() blocks = image.reshape(blocks_shape) blocks = np.transpose(blocks, axes=blocks_axis_order) blocks_flattened_shape = blocks.shape blocks = np.reshape(blocks, (np.product(ns_proc), np.product(blocks.shape[ndim:]))) # calculate interpolation coefficients coeffs = np.meshgrid(*tuple([np.arange(k) / k for k in kernel_size[::-1]]), indexing='ij') coeffs = [np.transpose(c).flatten() for c in coeffs] inv_coeffs = [1 - c for dim, c in enumerate(coeffs)] # sum over contributions of neighboring contextual # regions in each direction result = np.zeros(blocks.shape, dtype=np.float32) for iedge, edge in enumerate(np.ndindex(*([2] * ndim))): edge_maps = map_array[tuple([slice(e, e + n) for e, n in zip(edge, ns_proc)])] edge_maps = edge_maps.reshape((np.product(ns_proc), -1)) # apply map edge_mapped = np.take_along_axis(edge_maps, blocks, axis=-1) # interpolate edge_coeffs = np.product([[inv_coeffs, coeffs][e][d] for d, e in enumerate(edge[::-1])], 0) result += (edge_mapped * edge_coeffs).astype(result.dtype) result = result.astype(dtype) # rebuild result image from blocks result = result.reshape(blocks_flattened_shape) blocks_axis_rebuild_order =\ np.array([np.arange(0, ndim), np.arange(ndim, ndim * 2)]).T.flatten() result = np.transpose(result, axes=blocks_axis_rebuild_order) result = result.reshape(image.shape) # undo padding unpad_slices = tuple([slice(p_i, s - p_f) for p_i, p_f, s in zip(pad_start_per_dim, pad_end_per_dim, image.shape)]) result = result[unpad_slices] return result def clip_histogram(hist, clip_limit): """Perform clipping of the histogram and redistribution of bins. The histogram is clipped and the number of excess pixels is counted. Afterwards the excess pixels are equally redistributed across the whole histogram (providing the bin count is smaller than the cliplimit). Parameters ---------- hist : ndarray Histogram array. clip_limit : int Maximum allowed bin count. Returns ------- hist : ndarray Clipped histogram. """ # calculate total number of excess pixels excess_mask = hist > clip_limit excess = hist[excess_mask] n_excess = excess.sum() - excess.size * clip_limit hist[excess_mask] = clip_limit # Second part: clip histogram and redistribute excess pixels in each bin bin_incr = n_excess // hist.size # average binincrement upper = clip_limit - bin_incr # Bins larger than upper set to cliplimit low_mask = hist < upper n_excess -= hist[low_mask].size * bin_incr hist[low_mask] += bin_incr mid_mask = np.logical_and(hist >= upper, hist < clip_limit) mid = hist[mid_mask] n_excess += mid.sum() - mid.size * clip_limit hist[mid_mask] = clip_limit while n_excess > 0: # Redistribute remaining excess prev_n_excess = n_excess for index in range(hist.size): under_mask = hist < clip_limit step_size = max(1, np.count_nonzero(under_mask) // n_excess) under_mask = under_mask[index::step_size] hist[index::step_size][under_mask] += 1 n_excess -= np.count_nonzero(under_mask) if n_excess <= 0: break if prev_n_excess == n_excess: break return hist def map_histogram(hist, min_val, max_val, n_pixels): """Calculate the equalized lookup table (mapping). It does so by cumulating the input histogram. Histogram bins are assumed to be represented by the last array dimension. Parameters ---------- hist : ndarray Clipped histogram. min_val : int Minimum value for mapping. max_val : int Maximum value for mapping. n_pixels : int Number of pixels in the region. Returns ------- out : ndarray Mapped intensity LUT. """ out = np.cumsum(hist, axis=-1).astype(float) out *= (max_val - min_val) / n_pixels out += min_val np.clip(out, a_min=None, a_max=max_val, out=out) return out.astype(int)