import numpy as np from ..util.dtype import dtype_range, dtype_limits from .._shared import utils __all__ = ['histogram', 'cumulative_distribution', 'equalize_hist', 'rescale_intensity', 'adjust_gamma', 'adjust_log', 'adjust_sigmoid'] DTYPE_RANGE = dtype_range.copy() DTYPE_RANGE.update((d.__name__, limits) for d, limits in dtype_range.items()) DTYPE_RANGE.update({'uint10': (0, 2 ** 10 - 1), 'uint12': (0, 2 ** 12 - 1), 'uint14': (0, 2 ** 14 - 1), 'bool': dtype_range[bool], 'float': dtype_range[np.float64]}) def _offset_array(arr, low_boundary, high_boundary): """Offset the array to get the lowest value at 0 if negative.""" if low_boundary < 0: offset = low_boundary dyn_range = high_boundary - low_boundary # get smallest dtype that can hold both minimum and offset maximum offset_dtype = np.promote_types(np.min_scalar_type(dyn_range), np.min_scalar_type(low_boundary)) if arr.dtype != offset_dtype: # prevent overflow errors when offsetting arr = arr.astype(offset_dtype) arr = arr - offset else: offset = 0 return arr, offset def _bincount_histogram_centers(image, source_range): """Compute bin centers for bincount-based histogram.""" if source_range not in ['image', 'dtype']: raise ValueError( f'Incorrect value for `source_range` argument: {source_range}' ) if source_range == 'image': image_min = int(image.min().astype(np.int64)) image_max = int(image.max().astype(np.int64)) elif source_range == 'dtype': image_min, image_max = dtype_limits(image, clip_negative=False) bin_centers = np.arange(image_min, image_max + 1) return bin_centers def _bincount_histogram(image, source_range, bin_centers=None): """ Efficient histogram calculation for an image of integers. This function is significantly more efficient than np.histogram but works only on images of integers. It is based on np.bincount. Parameters ---------- image : array Input image. source_range : string 'image' determines the range from the input image. 'dtype' determines the range from the expected range of the images of that data type. Returns ------- hist : array The values of the histogram. bin_centers : array The values at the center of the bins. """ if bin_centers is None: bin_centers = _bincount_histogram_centers(image, source_range) image_min, image_max = bin_centers[0], bin_centers[-1] image, offset = _offset_array(image, image_min, image_max) hist = np.bincount(image.ravel(), minlength=image_max - image_min + 1) if source_range == 'image': idx = max(image_min, 0) hist = hist[idx:] return hist, bin_centers def _get_outer_edges(image, hist_range): """Determine the outer bin edges to use for `numpy.histogram`. These are obtained from either the image or hist_range. Parameters ---------- image : ndarray Image for which the histogram is to be computed. hist_range: 2-tuple of int or None Range of values covered by the histogram bins. If None, the minimum and maximum values of `image` are used. Returns ------- first_edge, last_edge : int The range spanned by the histogram bins. Notes ----- This function is adapted from ``np.lib.histograms._get_outer_edges``. """ if hist_range is not None: first_edge, last_edge = hist_range if first_edge > last_edge: raise ValueError( "max must be larger than min in hist_range parameter." ) if not (np.isfinite(first_edge) and np.isfinite(last_edge)): raise ValueError( f'supplied hist_range of [{first_edge}, {last_edge}] is ' f'not finite' ) elif image.size == 0: # handle empty arrays. Can't determine hist_range, so use 0-1. first_edge, last_edge = 0, 1 else: first_edge, last_edge = image.min(), image.max() if not (np.isfinite(first_edge) and np.isfinite(last_edge)): raise ValueError( f'autodetected hist_range of [{first_edge}, {last_edge}] is ' f'not finite' ) # expand empty hist_range to avoid divide by zero if first_edge == last_edge: first_edge = first_edge - 0.5 last_edge = last_edge + 0.5 return first_edge, last_edge def _get_bin_edges(image, nbins, hist_range): """Computes histogram bins for use with `numpy.histogram`. Parameters ---------- image : ndarray Image for which the histogram is to be computed. nbins : int The number of bins. hist_range: 2-tuple of int Range of values covered by the histogram bins. Returns ------- bin_edges : ndarray The histogram bin edges. Notes ----- This function is a simplified version of ``np.lib.histograms._get_bin_edges`` that only supports uniform bins. """ first_edge, last_edge = _get_outer_edges(image, hist_range) # numpy/gh-10322 means that type resolution rules are dependent on array # shapes. To avoid this causing problems, we pick a type now and stick # with it throughout. bin_type = np.result_type(first_edge, last_edge, image) if np.issubdtype(bin_type, np.integer): bin_type = np.result_type(bin_type, float) # compute bin edges bin_edges = np.linspace( first_edge, last_edge, nbins + 1, endpoint=True, dtype=bin_type ) return bin_edges def _get_numpy_hist_range(image, source_range): if source_range == 'image': hist_range = None elif source_range == 'dtype': hist_range = dtype_limits(image, clip_negative=False) else: ValueError('Wrong value for the `source_range` argument') return hist_range @utils.channel_as_last_axis(multichannel_output=False) def histogram(image, nbins=256, source_range='image', normalize=False, *, channel_axis=None): """Return histogram of image. Unlike `numpy.histogram`, this function returns the centers of bins and does not rebin integer arrays. For integer arrays, each integer value has its own bin, which improves speed and intensity-resolution. If `channel_axis` is not set, the histogram is computed on the flattened image. For color or multichannel images, set ``channel_axis`` to use a common binning for all channels. Alternatively, one may apply the function separately on each channel to obtain a histogram for each color channel with separate binning. Parameters ---------- image : array Input image. nbins : int, optional Number of bins used to calculate histogram. This value is ignored for integer arrays. source_range : string, optional 'image' (default) determines the range from the input image. 'dtype' determines the range from the expected range of the images of that data type. normalize : bool, optional If True, normalize the histogram by the sum of its values. channel_axis : int or None, optional If None, the image is assumed to be a grayscale (single channel) image. Otherwise, this parameter indicates which axis of the array corresponds to channels. Returns ------- hist : array The values of the histogram. When ``channel_axis`` is not None, hist will be a 2D array where the first axis corresponds to channels. bin_centers : array The values at the center of the bins. See Also -------- cumulative_distribution Examples -------- >>> from skimage import data, exposure, img_as_float >>> image = img_as_float(data.camera()) >>> np.histogram(image, bins=2) (array([ 93585, 168559]), array([0. , 0.5, 1. ])) >>> exposure.histogram(image, nbins=2) (array([ 93585, 168559]), array([0.25, 0.75])) """ sh = image.shape if len(sh) == 3 and sh[-1] < 4 and channel_axis is None: utils.warn('This might be a color image. The histogram will be ' 'computed on the flattened image. You can instead ' 'apply this function to each color channel, or set ' 'channel_axis.') if channel_axis is not None: channels = sh[-1] hist = [] # compute bins based on the raveled array if np.issubdtype(image.dtype, np.integer): # here bins corresponds to the bin centers bins = _bincount_histogram_centers(image, source_range) else: # determine the bin edges for np.histogram hist_range = _get_numpy_hist_range(image, source_range) bins = _get_bin_edges(image, nbins, hist_range) for chan in range(channels): h, bc = _histogram(image[..., chan], bins, source_range, normalize) hist.append(h) # Convert to numpy arrays bin_centers = np.asarray(bc) hist = np.stack(hist, axis=0) else: hist, bin_centers = _histogram(image, nbins, source_range, normalize) return hist, bin_centers def _histogram(image, bins, source_range, normalize): """ Parameters ---------- image : ndarray Image for which the histogram is to be computed. bins : int or ndarray The number of histogram bins. For images with integer dtype, an array containing the bin centers can also be provided. For images with floating point dtype, this can be an array of bin_edges for use by ``np.histogram``. source_range : string, optional 'image' (default) determines the range from the input image. 'dtype' determines the range from the expected range of the images of that data type. normalize : bool, optional If True, normalize the histogram by the sum of its values. """ image = image.flatten() # For integer types, histogramming with bincount is more efficient. if np.issubdtype(image.dtype, np.integer): bin_centers = bins if isinstance(bins, np.ndarray) else None hist, bin_centers = _bincount_histogram( image, source_range, bin_centers ) else: hist_range = _get_numpy_hist_range(image, source_range) hist, bin_edges = np.histogram(image, bins=bins, range=hist_range) bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2. if normalize: hist = hist / np.sum(hist) return hist, bin_centers def cumulative_distribution(image, nbins=256): """Return cumulative distribution function (cdf) for the given image. Parameters ---------- image : array Image array. nbins : int, optional Number of bins for image histogram. Returns ------- img_cdf : array Values of cumulative distribution function. bin_centers : array Centers of bins. See Also -------- histogram References ---------- .. [1] https://en.wikipedia.org/wiki/Cumulative_distribution_function Examples -------- >>> from skimage import data, exposure, img_as_float >>> image = img_as_float(data.camera()) >>> hi = exposure.histogram(image) >>> cdf = exposure.cumulative_distribution(image) >>> np.alltrue(cdf[0] == np.cumsum(hi[0])/float(image.size)) True """ hist, bin_centers = histogram(image, nbins) img_cdf = hist.cumsum() img_cdf = img_cdf / float(img_cdf[-1]) # cast img_cdf to single precision for float32 or float16 inputs cdf_dtype = utils._supported_float_type(image.dtype) img_cdf = img_cdf.astype(cdf_dtype, copy=False) return img_cdf, bin_centers def equalize_hist(image, nbins=256, mask=None): """Return image after histogram equalization. Parameters ---------- image : array Image array. nbins : int, optional Number of bins for image histogram. Note: this argument is ignored for integer images, for which each integer is its own bin. mask : ndarray of bools or 0s and 1s, optional Array of same shape as `image`. Only points at which mask == True are used for the equalization, which is applied to the whole image. Returns ------- out : float array Image array after histogram equalization. Notes ----- This function is adapted from [1]_ with the author's permission. References ---------- .. [1] http://www.janeriksolem.net/histogram-equalization-with-python-and.html .. [2] https://en.wikipedia.org/wiki/Histogram_equalization """ if mask is not None: mask = np.array(mask, dtype=bool) cdf, bin_centers = cumulative_distribution(image[mask], nbins) else: cdf, bin_centers = cumulative_distribution(image, nbins) out = np.interp(image.flat, bin_centers, cdf) out = out.reshape(image.shape) # Unfortunately, np.interp currently always promotes to float64, so we # have to cast back to single precision when float32 output is desired return out.astype(utils._supported_float_type(image.dtype), copy=False) def intensity_range(image, range_values='image', clip_negative=False): """Return image intensity range (min, max) based on desired value type. Parameters ---------- image : array Input image. range_values : str or 2-tuple, optional The image intensity range is configured by this parameter. The possible values for this parameter are enumerated below. 'image' Return image min/max as the range. 'dtype' Return min/max of the image's dtype as the range. dtype-name Return intensity range based on desired `dtype`. Must be valid key in `DTYPE_RANGE`. Note: `image` is ignored for this range type. 2-tuple Return `range_values` as min/max intensities. Note that there's no reason to use this function if you just want to specify the intensity range explicitly. This option is included for functions that use `intensity_range` to support all desired range types. clip_negative : bool, optional If True, clip the negative range (i.e. return 0 for min intensity) even if the image dtype allows negative values. """ if range_values == 'dtype': range_values = image.dtype.type if range_values == 'image': i_min = np.min(image) i_max = np.max(image) elif range_values in DTYPE_RANGE: i_min, i_max = DTYPE_RANGE[range_values] if clip_negative: i_min = 0 else: i_min, i_max = range_values return i_min, i_max def _output_dtype(dtype_or_range, image_dtype): """Determine the output dtype for rescale_intensity. The dtype is determined according to the following rules: - if ``dtype_or_range`` is a dtype, that is the output dtype. - if ``dtype_or_range`` is a dtype string, that is the dtype used, unless it is not a NumPy data type (e.g. 'uint12' for 12-bit unsigned integers), in which case the data type that can contain it will be used (e.g. uint16 in this case). - if ``dtype_or_range`` is a pair of values, the output data type will be ``_supported_float_type(image_dtype)``. This preserves float32 output for float32 inputs. Parameters ---------- dtype_or_range : type, string, or 2-tuple of int/float The desired range for the output, expressed as either a NumPy dtype or as a (min, max) pair of numbers. image_dtype : np.dtype The input image dtype. Returns ------- out_dtype : type The data type appropriate for the desired output. """ if type(dtype_or_range) in [list, tuple, np.ndarray]: # pair of values: always return float. return utils._supported_float_type(image_dtype) if type(dtype_or_range) == type: # already a type: return it return dtype_or_range if dtype_or_range in DTYPE_RANGE: # string key in DTYPE_RANGE dictionary try: # if it's a canonical numpy dtype, convert return np.dtype(dtype_or_range).type except TypeError: # uint10, uint12, uint14 # otherwise, return uint16 return np.uint16 else: raise ValueError( 'Incorrect value for out_range, should be a valid image data ' f'type or a pair of values, got {dtype_or_range}.' ) def rescale_intensity(image, in_range='image', out_range='dtype'): """Return image after stretching or shrinking its intensity levels. The desired intensity range of the input and output, `in_range` and `out_range` respectively, are used to stretch or shrink the intensity range of the input image. See examples below. Parameters ---------- image : array Image array. in_range, out_range : str or 2-tuple, optional Min and max intensity values of input and output image. The possible values for this parameter are enumerated below. 'image' Use image min/max as the intensity range. 'dtype' Use min/max of the image's dtype as the intensity range. dtype-name Use intensity range based on desired `dtype`. Must be valid key in `DTYPE_RANGE`. 2-tuple Use `range_values` as explicit min/max intensities. Returns ------- out : array Image array after rescaling its intensity. This image is the same dtype as the input image. Notes ----- .. versionchanged:: 0.17 The dtype of the output array has changed to match the input dtype, or float if the output range is specified by a pair of floats. See Also -------- equalize_hist Examples -------- By default, the min/max intensities of the input image are stretched to the limits allowed by the image's dtype, since `in_range` defaults to 'image' and `out_range` defaults to 'dtype': >>> image = np.array([51, 102, 153], dtype=np.uint8) >>> rescale_intensity(image) array([ 0, 127, 255], dtype=uint8) It's easy to accidentally convert an image dtype from uint8 to float: >>> 1.0 * image array([ 51., 102., 153.]) Use `rescale_intensity` to rescale to the proper range for float dtypes: >>> image_float = 1.0 * image >>> rescale_intensity(image_float) array([0. , 0.5, 1. ]) To maintain the low contrast of the original, use the `in_range` parameter: >>> rescale_intensity(image_float, in_range=(0, 255)) array([0.2, 0.4, 0.6]) If the min/max value of `in_range` is more/less than the min/max image intensity, then the intensity levels are clipped: >>> rescale_intensity(image_float, in_range=(0, 102)) array([0.5, 1. , 1. ]) If you have an image with signed integers but want to rescale the image to just the positive range, use the `out_range` parameter. In that case, the output dtype will be float: >>> image = np.array([-10, 0, 10], dtype=np.int8) >>> rescale_intensity(image, out_range=(0, 127)) array([ 0. , 63.5, 127. ]) To get the desired range with a specific dtype, use ``.astype()``: >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int8) array([ 0, 63, 127], dtype=int8) If the input image is constant, the output will be clipped directly to the output range: >>> image = np.array([130, 130, 130], dtype=np.int32) >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int32) array([127, 127, 127], dtype=int32) """ if out_range in ['dtype', 'image']: out_dtype = _output_dtype(image.dtype.type, image.dtype) else: out_dtype = _output_dtype(out_range, image.dtype) imin, imax = map(float, intensity_range(image, in_range)) omin, omax = map(float, intensity_range(image, out_range, clip_negative=(imin >= 0))) if np.any(np.isnan([imin, imax, omin, omax])): utils.warn( "One or more intensity levels are NaN. Rescaling will broadcast " "NaN to the full image. Provide intensity levels yourself to " "avoid this. E.g. with np.nanmin(image), np.nanmax(image).", stacklevel=2 ) image = np.clip(image, imin, imax) if imin != imax: image = (image - imin) / (imax - imin) return np.asarray(image * (omax - omin) + omin, dtype=out_dtype) else: return np.clip(image, omin, omax).astype(out_dtype) def _assert_non_negative(image): if np.any(image < 0): raise ValueError('Image Correction methods work correctly only on ' 'images with non-negative values. Use ' 'skimage.exposure.rescale_intensity.') def _adjust_gamma_u8(image, gamma, gain): """LUT based implementation of gamma adjustment. """ lut = (255 * gain * (np.linspace(0, 1, 256) ** gamma)) lut = np.minimum(lut, 255).astype('uint8') return lut[image] def adjust_gamma(image, gamma=1, gain=1): """Performs Gamma Correction on the input image. Also known as Power Law Transform. This function transforms the input image pixelwise according to the equation ``O = I**gamma`` after scaling each pixel to the range 0 to 1. Parameters ---------- image : ndarray Input image. gamma : float, optional Non negative real number. Default value is 1. gain : float, optional The constant multiplier. Default value is 1. Returns ------- out : ndarray Gamma corrected output image. See Also -------- adjust_log Notes ----- For gamma greater than 1, the histogram will shift towards left and the output image will be darker than the input image. For gamma less than 1, the histogram will shift towards right and the output image will be brighter than the input image. References ---------- .. [1] https://en.wikipedia.org/wiki/Gamma_correction Examples -------- >>> from skimage import data, exposure, img_as_float >>> image = img_as_float(data.moon()) >>> gamma_corrected = exposure.adjust_gamma(image, 2) >>> # Output is darker for gamma > 1 >>> image.mean() > gamma_corrected.mean() True """ if gamma < 0: raise ValueError("Gamma should be a non-negative real number.") dtype = image.dtype.type if dtype is np.uint8: out = _adjust_gamma_u8(image, gamma, gain) else: _assert_non_negative(image) scale = float(dtype_limits(image, True)[1] - dtype_limits(image, True)[0]) out = (((image / scale) ** gamma) * scale * gain).astype(dtype) return out def adjust_log(image, gain=1, inv=False): """Performs Logarithmic correction on the input image. This function transforms the input image pixelwise according to the equation ``O = gain*log(1 + I)`` after scaling each pixel to the range 0 to 1. For inverse logarithmic correction, the equation is ``O = gain*(2**I - 1)``. Parameters ---------- image : ndarray Input image. gain : float, optional The constant multiplier. Default value is 1. inv : float, optional If True, it performs inverse logarithmic correction, else correction will be logarithmic. Defaults to False. Returns ------- out : ndarray Logarithm corrected output image. See Also -------- adjust_gamma References ---------- .. [1] http://www.ece.ucsb.edu/Faculty/Manjunath/courses/ece178W03/EnhancePart1.pdf """ _assert_non_negative(image) dtype = image.dtype.type scale = float(dtype_limits(image, True)[1] - dtype_limits(image, True)[0]) if inv: out = (2 ** (image / scale) - 1) * scale * gain return dtype(out) out = np.log2(1 + image / scale) * scale * gain return out.astype(dtype) def adjust_sigmoid(image, cutoff=0.5, gain=10, inv=False): """Performs Sigmoid Correction on the input image. Also known as Contrast Adjustment. This function transforms the input image pixelwise according to the equation ``O = 1/(1 + exp*(gain*(cutoff - I)))`` after scaling each pixel to the range 0 to 1. Parameters ---------- image : ndarray Input image. cutoff : float, optional Cutoff of the sigmoid function that shifts the characteristic curve in horizontal direction. Default value is 0.5. gain : float, optional The constant multiplier in exponential's power of sigmoid function. Default value is 10. inv : bool, optional If True, returns the negative sigmoid correction. Defaults to False. Returns ------- out : ndarray Sigmoid corrected output image. See Also -------- adjust_gamma References ---------- .. [1] Gustav J. Braun, "Image Lightness Rescaling Using Sigmoidal Contrast Enhancement Functions", http://markfairchild.org/PDFs/PAP07.pdf """ _assert_non_negative(image) dtype = image.dtype.type scale = float(dtype_limits(image, True)[1] - dtype_limits(image, True)[0]) if inv: out = (1 - 1 / (1 + np.exp(gain * (cutoff - image / scale)))) * scale return dtype(out) out = (1 / (1 + np.exp(gain * (cutoff - image / scale)))) * scale return out.astype(dtype) def is_low_contrast(image, fraction_threshold=0.05, lower_percentile=1, upper_percentile=99, method='linear'): """Determine if an image is low contrast. Parameters ---------- image : array-like The image under test. fraction_threshold : float, optional The low contrast fraction threshold. An image is considered low- contrast when its range of brightness spans less than this fraction of its data type's full range. [1]_ lower_percentile : float, optional Disregard values below this percentile when computing image contrast. upper_percentile : float, optional Disregard values above this percentile when computing image contrast. method : str, optional The contrast determination method. Right now the only available option is "linear". Returns ------- out : bool True when the image is determined to be low contrast. Notes ----- For boolean images, this function returns False only if all values are the same (the method, threshold, and percentile arguments are ignored). References ---------- .. [1] https://scikit-image.org/docs/dev/user_guide/data_types.html Examples -------- >>> image = np.linspace(0, 0.04, 100) >>> is_low_contrast(image) True >>> image[-1] = 1 >>> is_low_contrast(image) True >>> is_low_contrast(image, upper_percentile=100) False """ image = np.asanyarray(image) if image.dtype == bool: return not ((image.max() == 1) and (image.min() == 0)) if image.ndim == 3: from ..color import rgb2gray, rgba2rgb # avoid circular import if image.shape[2] == 4: image = rgba2rgb(image) if image.shape[2] == 3: image = rgb2gray(image) dlimits = dtype_limits(image, clip_negative=False) limits = np.percentile(image, [lower_percentile, upper_percentile]) ratio = (limits[1] - limits[0]) / (dlimits[1] - dlimits[0]) return ratio < fraction_threshold