import numpy as np from .._shared import utils def _match_cumulative_cdf(source, template): """ Return modified source array so that the cumulative density function of its values matches the cumulative density function of the template. """ src_values, src_unique_indices, src_counts = np.unique(source.ravel(), return_inverse=True, return_counts=True) tmpl_values, tmpl_counts = np.unique(template.ravel(), return_counts=True) # calculate normalized quantiles for each array src_quantiles = np.cumsum(src_counts) / source.size tmpl_quantiles = np.cumsum(tmpl_counts) / template.size interp_a_values = np.interp(src_quantiles, tmpl_quantiles, tmpl_values) return interp_a_values[src_unique_indices].reshape(source.shape) @utils.channel_as_last_axis(channel_arg_positions=(0, 1)) @utils.deprecate_multichannel_kwarg() def match_histograms(image, reference, *, channel_axis=None, multichannel=False): """Adjust an image so that its cumulative histogram matches that of another. The adjustment is applied separately for each channel. Parameters ---------- image : ndarray Input image. Can be gray-scale or in color. reference : ndarray Image to match histogram of. Must have the same number of channels as image. channel_axis : int or None, optional If None, the image is assumed to be a grayscale (single channel) image. Otherwise, this parameter indicates which axis of the array corresponds to channels. multichannel : bool, optional Apply the matching separately for each channel. This argument is deprecated: specify `channel_axis` instead. Returns ------- matched : ndarray Transformed input image. Raises ------ ValueError Thrown when the number of channels in the input image and the reference differ. References ---------- .. [1] http://paulbourke.net/miscellaneous/equalisation/ """ if image.ndim != reference.ndim: raise ValueError('Image and reference must have the same number ' 'of channels.') if channel_axis is not None: if image.shape[-1] != reference.shape[-1]: raise ValueError('Number of channels in the input image and ' 'reference image must match!') matched = np.empty(image.shape, dtype=image.dtype) for channel in range(image.shape[-1]): matched_channel = _match_cumulative_cdf(image[..., channel], reference[..., channel]) matched[..., channel] = matched_channel else: # _match_cumulative_cdf will always return float64 due to np.interp matched = _match_cumulative_cdf(image, reference) if matched.dtype.kind == 'f': # output a float32 result when the input is float16 or float32 out_dtype = utils._supported_float_type(image.dtype) matched = matched.astype(out_dtype, copy=False) return matched