import math import numpy as np import scipy.ndimage as ndi from scipy import spatial from .._shared.filters import gaussian from .._shared.utils import _supported_float_type, check_nD from ..transform import integral_image from ..util import img_as_float from ._hessian_det_appx import _hessian_matrix_det from .peak import peak_local_max # This basic blob detection algorithm is based on: # http://www.cs.utah.edu/~jfishbau/advimproc/project1/ (04.04.2013) # Theory behind: https://en.wikipedia.org/wiki/Blob_detection (04.04.2013) def _compute_disk_overlap(d, r1, r2): """ Compute fraction of surface overlap between two disks of radii ``r1`` and ``r2``, with centers separated by a distance ``d``. Parameters ---------- d : float Distance between centers. r1 : float Radius of the first disk. r2 : float Radius of the second disk. Returns ------- fraction: float Fraction of area of the overlap between the two disks. """ ratio1 = (d ** 2 + r1 ** 2 - r2 ** 2) / (2 * d * r1) ratio1 = np.clip(ratio1, -1, 1) acos1 = math.acos(ratio1) ratio2 = (d ** 2 + r2 ** 2 - r1 ** 2) / (2 * d * r2) ratio2 = np.clip(ratio2, -1, 1) acos2 = math.acos(ratio2) a = -d + r2 + r1 b = d - r2 + r1 c = d + r2 - r1 d = d + r2 + r1 area = (r1 ** 2 * acos1 + r2 ** 2 * acos2 - 0.5 * math.sqrt(abs(a * b * c * d))) return area / (math.pi * (min(r1, r2) ** 2)) def _compute_sphere_overlap(d, r1, r2): """ Compute volume overlap fraction between two spheres of radii ``r1`` and ``r2``, with centers separated by a distance ``d``. Parameters ---------- d : float Distance between centers. r1 : float Radius of the first sphere. r2 : float Radius of the second sphere. Returns ------- fraction: float Fraction of volume of the overlap between the two spheres. Notes ----- See for example http://mathworld.wolfram.com/Sphere-SphereIntersection.html for more details. """ vol = (math.pi / (12 * d) * (r1 + r2 - d)**2 * (d**2 + 2 * d * (r1 + r2) - 3 * (r1**2 + r2**2) + 6 * r1 * r2)) return vol / (4./3 * math.pi * min(r1, r2) ** 3) def _blob_overlap(blob1, blob2, *, sigma_dim=1): """Finds the overlapping area fraction between two blobs. Returns a float representing fraction of overlapped area. Note that 0.0 is *always* returned for dimension greater than 3. Parameters ---------- blob1 : sequence of arrays A sequence of ``(row, col, sigma)`` or ``(pln, row, col, sigma)``, where ``row, col`` (or ``(pln, row, col)``) are coordinates of blob and ``sigma`` is the standard deviation of the Gaussian kernel which detected the blob. blob2 : sequence of arrays A sequence of ``(row, col, sigma)`` or ``(pln, row, col, sigma)``, where ``row, col`` (or ``(pln, row, col)``) are coordinates of blob and ``sigma`` is the standard deviation of the Gaussian kernel which detected the blob. sigma_dim : int, optional The dimensionality of the sigma value. Can be 1 or the same as the dimensionality of the blob space (2 or 3). Returns ------- f : float Fraction of overlapped area (or volume in 3D). """ ndim = len(blob1) - sigma_dim if ndim > 3: return 0.0 root_ndim = math.sqrt(ndim) # we divide coordinates by sigma * sqrt(ndim) to rescale space to isotropy, # giving spheres of radius = 1 or < 1. if blob1[-1] == blob2[-1] == 0: return 0.0 elif blob1[-1] > blob2[-1]: max_sigma = blob1[-sigma_dim:] r1 = 1 r2 = blob2[-1] / blob1[-1] else: max_sigma = blob2[-sigma_dim:] r2 = 1 r1 = blob1[-1] / blob2[-1] pos1 = blob1[:ndim] / (max_sigma * root_ndim) pos2 = blob2[:ndim] / (max_sigma * root_ndim) d = np.sqrt(np.sum((pos2 - pos1)**2)) if d > r1 + r2: # centers farther than sum of radii, so no overlap return 0.0 # one blob is inside the other if d <= abs(r1 - r2): return 1.0 if ndim == 2: return _compute_disk_overlap(d, r1, r2) else: # ndim=3 http://mathworld.wolfram.com/Sphere-SphereIntersection.html return _compute_sphere_overlap(d, r1, r2) def _prune_blobs(blobs_array, overlap, *, sigma_dim=1): """Eliminated blobs with area overlap. Parameters ---------- blobs_array : ndarray A 2d array with each row representing 3 (or 4) values, ``(row, col, sigma)`` or ``(pln, row, col, sigma)`` in 3D, where ``(row, col)`` (``(pln, row, col)``) are coordinates of the blob and ``sigma`` is the standard deviation of the Gaussian kernel which detected the blob. This array must not have a dimension of size 0. overlap : float A value between 0 and 1. If the fraction of area overlapping for 2 blobs is greater than `overlap` the smaller blob is eliminated. sigma_dim : int, optional The number of columns in ``blobs_array`` corresponding to sigmas rather than positions. Returns ------- A : ndarray `array` with overlapping blobs removed. """ sigma = blobs_array[:, -sigma_dim:].max() distance = 2 * sigma * math.sqrt(blobs_array.shape[1] - sigma_dim) tree = spatial.cKDTree(blobs_array[:, :-sigma_dim]) pairs = np.array(list(tree.query_pairs(distance))) if len(pairs) == 0: return blobs_array else: for (i, j) in pairs: blob1, blob2 = blobs_array[i], blobs_array[j] if _blob_overlap(blob1, blob2, sigma_dim=sigma_dim) > overlap: # note: this test works even in the anisotropic case because # all sigmas increase together. if blob1[-1] > blob2[-1]: blob2[-1] = 0 else: blob1[-1] = 0 return np.stack([b for b in blobs_array if b[-1] > 0]) def _format_exclude_border(img_ndim, exclude_border): """Format an ``exclude_border`` argument as a tuple of ints for calling ``peak_local_max``. """ if isinstance(exclude_border, tuple): if len(exclude_border) != img_ndim: raise ValueError( "`exclude_border` should have the same length as the " "dimensionality of the image.") for exclude in exclude_border: if not isinstance(exclude, int): raise ValueError( "exclude border, when expressed as a tuple, must only " "contain ints.") return exclude_border elif isinstance(exclude_border, int): return (exclude_border,) * img_ndim + (0,) elif exclude_border is True: raise ValueError("exclude_border cannot be True") elif exclude_border is False: return (0,) * (img_ndim + 1) else: raise ValueError( f'Unsupported value ({exclude_border}) for exclude_border' ) def blob_dog(image, min_sigma=1, max_sigma=50, sigma_ratio=1.6, threshold=0.5, overlap=.5, *, threshold_rel=None, exclude_border=False): r"""Finds blobs in the given grayscale image. Blobs are found using the Difference of Gaussian (DoG) method [1]_, [2]_. For each blob found, the method returns its coordinates and the standard deviation of the Gaussian kernel that detected the blob. Parameters ---------- image : ndarray Input grayscale image, blobs are assumed to be light on dark background (white on black). min_sigma : scalar or sequence of scalars, optional The minimum standard deviation for Gaussian kernel. Keep this low to detect smaller blobs. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. max_sigma : scalar or sequence of scalars, optional The maximum standard deviation for Gaussian kernel. Keep this high to detect larger blobs. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. sigma_ratio : float, optional The ratio between the standard deviation of Gaussian Kernels used for computing the Difference of Gaussians threshold : float or None, optional The absolute lower bound for scale space maxima. Local maxima smaller than `threshold` are ignored. Reduce this to detect blobs with lower intensities. If `threshold_rel` is also specified, whichever threshold is larger will be used. If None, `threshold_rel` is used instead. overlap : float, optional A value between 0 and 1. If the area of two blobs overlaps by a fraction greater than `threshold`, the smaller blob is eliminated. threshold_rel : float or None, optional Minimum intensity of peaks, calculated as ``max(dog_space) * threshold_rel``, where ``dog_space`` refers to the stack of Difference-of-Gaussian (DoG) images computed internally. This should have a value between 0 and 1. If None, `threshold` is used instead. exclude_border : tuple of ints, int, or False, optional If tuple of ints, the length of the tuple must match the input array's dimensionality. Each element of the tuple will exclude peaks from within `exclude_border`-pixels of the border of the image along that dimension. If nonzero int, `exclude_border` excludes peaks from within `exclude_border`-pixels of the border of the image. If zero or False, peaks are identified regardless of their distance from the border. Returns ------- A : (n, image.ndim + sigma) ndarray A 2d array with each row representing 2 coordinate values for a 2D image, or 3 coordinate values for a 3D image, plus the sigma(s) used. When a single sigma is passed, outputs are: ``(r, c, sigma)`` or ``(p, r, c, sigma)`` where ``(r, c)`` or ``(p, r, c)`` are coordinates of the blob and ``sigma`` is the standard deviation of the Gaussian kernel which detected the blob. When an anisotropic gaussian is used (sigmas per dimension), the detected sigma is returned for each dimension. See also -------- skimage.filters.difference_of_gaussians References ---------- .. [1] https://en.wikipedia.org/wiki/Blob_detection#The_difference_of_Gaussians_approach .. [2] Lowe, D. G. "Distinctive Image Features from Scale-Invariant Keypoints." International Journal of Computer Vision 60, 91–110 (2004). https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf :DOI:`10.1023/B:VISI.0000029664.99615.94` Examples -------- >>> from skimage import data, feature >>> coins = data.coins() >>> feature.blob_dog(coins, threshold=.05, min_sigma=10, max_sigma=40) array([[128., 155., 10.], [198., 155., 10.], [124., 338., 10.], [127., 102., 10.], [193., 281., 10.], [126., 208., 10.], [267., 115., 10.], [197., 102., 10.], [198., 215., 10.], [123., 279., 10.], [126., 46., 10.], [259., 247., 10.], [196., 43., 10.], [ 54., 276., 10.], [267., 358., 10.], [ 58., 100., 10.], [259., 305., 10.], [185., 347., 16.], [261., 174., 16.], [ 46., 336., 16.], [ 54., 217., 10.], [ 55., 157., 10.], [ 57., 41., 10.], [260., 47., 16.]]) Notes ----- The radius of each blob is approximately :math:`\sqrt{2}\sigma` for a 2-D image and :math:`\sqrt{3}\sigma` for a 3-D image. """ image = img_as_float(image) float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) # if both min and max sigma are scalar, function returns only one sigma scalar_sigma = np.isscalar(max_sigma) and np.isscalar(min_sigma) # Gaussian filter requires that sequence-type sigmas have same # dimensionality as image. This broadcasts scalar kernels if np.isscalar(max_sigma): max_sigma = np.full(image.ndim, max_sigma, dtype=float_dtype) if np.isscalar(min_sigma): min_sigma = np.full(image.ndim, min_sigma, dtype=float_dtype) # Convert sequence types to array min_sigma = np.asarray(min_sigma, dtype=float_dtype) max_sigma = np.asarray(max_sigma, dtype=float_dtype) if sigma_ratio <= 1.0: raise ValueError('sigma_ratio must be > 1.0') # k such that min_sigma*(sigma_ratio**k) > max_sigma k = int(np.mean(np.log(max_sigma / min_sigma) / np.log(sigma_ratio) + 1)) # a geometric progression of standard deviations for gaussian kernels sigma_list = np.array([min_sigma * (sigma_ratio ** i) for i in range(k + 1)]) gaussian_images = [gaussian(image, s, mode='reflect') for s in sigma_list] # normalization factor for consistency in DoG magnitude sf = 1 / (sigma_ratio - 1) # computing difference between two successive Gaussian blurred images # to obtain an approximation of the scale invariant Laplacian of the # Gaussian operator dog_images = [ (gaussian_images[i] - gaussian_images[i + 1]) * sf for i in range(k) ] image_cube = np.stack(dog_images, axis=-1) exclude_border = _format_exclude_border(image.ndim, exclude_border) local_maxima = peak_local_max( image_cube, threshold_abs=threshold, threshold_rel=threshold_rel, exclude_border=exclude_border, footprint=np.ones((3,) * (image.ndim + 1)), ) # Catch no peaks if local_maxima.size == 0: return np.empty((0, image.ndim + (1 if scalar_sigma else image.ndim))) # Convert local_maxima to float64 lm = local_maxima.astype(float_dtype) # translate final column of lm, which contains the index of the # sigma that produced the maximum intensity value, into the sigma sigmas_of_peaks = sigma_list[local_maxima[:, -1]] if scalar_sigma: # select one sigma column, keeping dimension sigmas_of_peaks = sigmas_of_peaks[:, 0:1] # Remove sigma index and replace with sigmas lm = np.hstack([lm[:, :-1], sigmas_of_peaks]) sigma_dim = sigmas_of_peaks.shape[1] return _prune_blobs(lm, overlap, sigma_dim=sigma_dim) def blob_log(image, min_sigma=1, max_sigma=50, num_sigma=10, threshold=.2, overlap=.5, log_scale=False, *, threshold_rel=None, exclude_border=False): r"""Finds blobs in the given grayscale image. Blobs are found using the Laplacian of Gaussian (LoG) method [1]_. For each blob found, the method returns its coordinates and the standard deviation of the Gaussian kernel that detected the blob. Parameters ---------- image : ndarray Input grayscale image, blobs are assumed to be light on dark background (white on black). min_sigma : scalar or sequence of scalars, optional the minimum standard deviation for Gaussian kernel. Keep this low to detect smaller blobs. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. max_sigma : scalar or sequence of scalars, optional The maximum standard deviation for Gaussian kernel. Keep this high to detect larger blobs. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. num_sigma : int, optional The number of intermediate values of standard deviations to consider between `min_sigma` and `max_sigma`. threshold : float or None, optional The absolute lower bound for scale space maxima. Local maxima smaller than `threshold` are ignored. Reduce this to detect blobs with lower intensities. If `threshold_rel` is also specified, whichever threshold is larger will be used. If None, `threshold_rel` is used instead. overlap : float, optional A value between 0 and 1. If the area of two blobs overlaps by a fraction greater than `threshold`, the smaller blob is eliminated. log_scale : bool, optional If set intermediate values of standard deviations are interpolated using a logarithmic scale to the base `10`. If not, linear interpolation is used. threshold_rel : float or None, optional Minimum intensity of peaks, calculated as ``max(log_space) * threshold_rel``, where ``log_space`` refers to the stack of Laplacian-of-Gaussian (LoG) images computed internally. This should have a value between 0 and 1. If None, `threshold` is used instead. exclude_border : tuple of ints, int, or False, optional If tuple of ints, the length of the tuple must match the input array's dimensionality. Each element of the tuple will exclude peaks from within `exclude_border`-pixels of the border of the image along that dimension. If nonzero int, `exclude_border` excludes peaks from within `exclude_border`-pixels of the border of the image. If zero or False, peaks are identified regardless of their distance from the border. Returns ------- A : (n, image.ndim + sigma) ndarray A 2d array with each row representing 2 coordinate values for a 2D image, or 3 coordinate values for a 3D image, plus the sigma(s) used. When a single sigma is passed, outputs are: ``(r, c, sigma)`` or ``(p, r, c, sigma)`` where ``(r, c)`` or ``(p, r, c)`` are coordinates of the blob and ``sigma`` is the standard deviation of the Gaussian kernel which detected the blob. When an anisotropic gaussian is used (sigmas per dimension), the detected sigma is returned for each dimension. References ---------- .. [1] https://en.wikipedia.org/wiki/Blob_detection#The_Laplacian_of_Gaussian Examples -------- >>> from skimage import data, feature, exposure >>> img = data.coins() >>> img = exposure.equalize_hist(img) # improves detection >>> feature.blob_log(img, threshold = .3) array([[124. , 336. , 11.88888889], [198. , 155. , 11.88888889], [194. , 213. , 17.33333333], [121. , 272. , 17.33333333], [263. , 244. , 17.33333333], [194. , 276. , 17.33333333], [266. , 115. , 11.88888889], [128. , 154. , 11.88888889], [260. , 174. , 17.33333333], [198. , 103. , 11.88888889], [126. , 208. , 11.88888889], [127. , 102. , 11.88888889], [263. , 302. , 17.33333333], [197. , 44. , 11.88888889], [185. , 344. , 17.33333333], [126. , 46. , 11.88888889], [113. , 323. , 1. ]]) Notes ----- The radius of each blob is approximately :math:`\sqrt{2}\sigma` for a 2-D image and :math:`\sqrt{3}\sigma` for a 3-D image. """ image = img_as_float(image) float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) # if both min and max sigma are scalar, function returns only one sigma scalar_sigma = ( True if np.isscalar(max_sigma) and np.isscalar(min_sigma) else False ) # Gaussian filter requires that sequence-type sigmas have same # dimensionality as image. This broadcasts scalar kernels if np.isscalar(max_sigma): max_sigma = np.full(image.ndim, max_sigma, dtype=float_dtype) if np.isscalar(min_sigma): min_sigma = np.full(image.ndim, min_sigma, dtype=float_dtype) # Convert sequence types to array min_sigma = np.asarray(min_sigma, dtype=float_dtype) max_sigma = np.asarray(max_sigma, dtype=float_dtype) if log_scale: start = np.log10(min_sigma) stop = np.log10(max_sigma) sigma_list = np.logspace(start, stop, num_sigma) else: sigma_list = np.linspace(min_sigma, max_sigma, num_sigma) # computing gaussian laplace # average s**2 provides scale invariance gl_images = [-ndi.gaussian_laplace(image, s) * np.mean(s) ** 2 for s in sigma_list] image_cube = np.stack(gl_images, axis=-1) exclude_border = _format_exclude_border(image.ndim, exclude_border) local_maxima = peak_local_max( image_cube, threshold_abs=threshold, threshold_rel=threshold_rel, exclude_border=exclude_border, footprint=np.ones((3,) * (image.ndim + 1)), ) # Catch no peaks if local_maxima.size == 0: return np.empty((0, image.ndim + (1 if scalar_sigma else image.ndim))) # Convert local_maxima to float64 lm = local_maxima.astype(float_dtype) # translate final column of lm, which contains the index of the # sigma that produced the maximum intensity value, into the sigma sigmas_of_peaks = sigma_list[local_maxima[:, -1]] if scalar_sigma: # select one sigma column, keeping dimension sigmas_of_peaks = sigmas_of_peaks[:, 0:1] # Remove sigma index and replace with sigmas lm = np.hstack([lm[:, :-1], sigmas_of_peaks]) sigma_dim = sigmas_of_peaks.shape[1] return _prune_blobs(lm, overlap, sigma_dim=sigma_dim) def blob_doh(image, min_sigma=1, max_sigma=30, num_sigma=10, threshold=0.01, overlap=.5, log_scale=False, *, threshold_rel=None): """Finds blobs in the given grayscale image. Blobs are found using the Determinant of Hessian method [1]_. For each blob found, the method returns its coordinates and the standard deviation of the Gaussian Kernel used for the Hessian matrix whose determinant detected the blob. Determinant of Hessians is approximated using [2]_. Parameters ---------- image : 2D ndarray Input grayscale image.Blobs can either be light on dark or vice versa. min_sigma : float, optional The minimum standard deviation for Gaussian Kernel used to compute Hessian matrix. Keep this low to detect smaller blobs. max_sigma : float, optional The maximum standard deviation for Gaussian Kernel used to compute Hessian matrix. Keep this high to detect larger blobs. num_sigma : int, optional The number of intermediate values of standard deviations to consider between `min_sigma` and `max_sigma`. threshold : float or None, optional The absolute lower bound for scale space maxima. Local maxima smaller than `threshold` are ignored. Reduce this to detect blobs with lower intensities. If `threshold_rel` is also specified, whichever threshold is larger will be used. If None, `threshold_rel` is used instead. overlap : float, optional A value between 0 and 1. If the area of two blobs overlaps by a fraction greater than `threshold`, the smaller blob is eliminated. log_scale : bool, optional If set intermediate values of standard deviations are interpolated using a logarithmic scale to the base `10`. If not, linear interpolation is used. threshold_rel : float or None, optional Minimum intensity of peaks, calculated as ``max(doh_space) * threshold_rel``, where ``doh_space`` refers to the stack of Determinant-of-Hessian (DoH) images computed internally. This should have a value between 0 and 1. If None, `threshold` is used instead. Returns ------- A : (n, 3) ndarray A 2d array with each row representing 3 values, ``(y,x,sigma)`` where ``(y,x)`` are coordinates of the blob and ``sigma`` is the standard deviation of the Gaussian kernel of the Hessian Matrix whose determinant detected the blob. References ---------- .. [1] https://en.wikipedia.org/wiki/Blob_detection#The_determinant_of_the_Hessian .. [2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, "SURF: Speeded Up Robust Features" ftp://ftp.vision.ee.ethz.ch/publications/articles/eth_biwi_00517.pdf Examples -------- >>> from skimage import data, feature >>> img = data.coins() >>> feature.blob_doh(img) array([[197. , 153. , 20.33333333], [124. , 336. , 20.33333333], [126. , 153. , 20.33333333], [195. , 100. , 23.55555556], [192. , 212. , 23.55555556], [121. , 271. , 30. ], [126. , 101. , 20.33333333], [193. , 275. , 23.55555556], [123. , 205. , 20.33333333], [270. , 363. , 30. ], [265. , 113. , 23.55555556], [262. , 243. , 23.55555556], [185. , 348. , 30. ], [156. , 302. , 30. ], [123. , 44. , 23.55555556], [260. , 173. , 30. ], [197. , 44. , 20.33333333]]) Notes ----- The radius of each blob is approximately `sigma`. Computation of Determinant of Hessians is independent of the standard deviation. Therefore detecting larger blobs won't take more time. In methods line :py:meth:`blob_dog` and :py:meth:`blob_log` the computation of Gaussians for larger `sigma` takes more time. The downside is that this method can't be used for detecting blobs of radius less than `3px` due to the box filters used in the approximation of Hessian Determinant. """ check_nD(image, 2) image = img_as_float(image) float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) image = integral_image(image) if log_scale: start, stop = math.log(min_sigma, 10), math.log(max_sigma, 10) sigma_list = np.logspace(start, stop, num_sigma) else: sigma_list = np.linspace(min_sigma, max_sigma, num_sigma) hessian_images = [_hessian_matrix_det(image, s) for s in sigma_list] image_cube = np.dstack(hessian_images) local_maxima = peak_local_max(image_cube, threshold_abs=threshold, threshold_rel=threshold_rel, exclude_border=False, footprint=np.ones((3,) * image_cube.ndim)) # Catch no peaks if local_maxima.size == 0: return np.empty((0, 3)) # Convert local_maxima to float64 lm = local_maxima.astype(np.float64) # Convert the last index to its corresponding scale value lm[:, -1] = sigma_list[local_maxima[:, -1]] return _prune_blobs(lm, overlap)