import numpy as np from scipy.signal import fftconvolve from .._shared.utils import check_nD, _supported_float_type def _window_sum_2d(image, window_shape): window_sum = np.cumsum(image, axis=0) window_sum = (window_sum[window_shape[0]:-1] - window_sum[:-window_shape[0] - 1]) window_sum = np.cumsum(window_sum, axis=1) window_sum = (window_sum[:, window_shape[1]:-1] - window_sum[:, :-window_shape[1] - 1]) return window_sum def _window_sum_3d(image, window_shape): window_sum = _window_sum_2d(image, window_shape) window_sum = np.cumsum(window_sum, axis=2) window_sum = (window_sum[:, :, window_shape[2]:-1] - window_sum[:, :, :-window_shape[2] - 1]) return window_sum def match_template(image, template, pad_input=False, mode='constant', constant_values=0): """Match a template to a 2-D or 3-D image using normalized correlation. The output is an array with values between -1.0 and 1.0. The value at a given position corresponds to the correlation coefficient between the image and the template. For `pad_input=True` matches correspond to the center and otherwise to the top-left corner of the template. To find the best match you must search for peaks in the response (output) image. Parameters ---------- image : (M, N[, D]) array 2-D or 3-D input image. template : (m, n[, d]) array Template to locate. It must be `(m <= M, n <= N[, d <= D])`. pad_input : bool If True, pad `image` so that output is the same size as the image, and output values correspond to the template center. Otherwise, the output is an array with shape `(M - m + 1, N - n + 1)` for an `(M, N)` image and an `(m, n)` template, and matches correspond to origin (top-left corner) of the template. mode : see `numpy.pad`, optional Padding mode. constant_values : see `numpy.pad`, optional Constant values used in conjunction with ``mode='constant'``. Returns ------- output : array Response image with correlation coefficients. Notes ----- Details on the cross-correlation are presented in [1]_. This implementation uses FFT convolutions of the image and the template. Reference [2]_ presents similar derivations but the approximation presented in this reference is not used in our implementation. References ---------- .. [1] J. P. Lewis, "Fast Normalized Cross-Correlation", Industrial Light and Magic. .. [2] Briechle and Hanebeck, "Template Matching using Fast Normalized Cross Correlation", Proceedings of the SPIE (2001). :DOI:`10.1117/12.421129` Examples -------- >>> template = np.zeros((3, 3)) >>> template[1, 1] = 1 >>> template array([[0., 0., 0.], [0., 1., 0.], [0., 0., 0.]]) >>> image = np.zeros((6, 6)) >>> image[1, 1] = 1 >>> image[4, 4] = -1 >>> image array([[ 0., 0., 0., 0., 0., 0.], [ 0., 1., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., -1., 0.], [ 0., 0., 0., 0., 0., 0.]]) >>> result = match_template(image, template) >>> np.round(result, 3) array([[ 1. , -0.125, 0. , 0. ], [-0.125, -0.125, 0. , 0. ], [ 0. , 0. , 0.125, 0.125], [ 0. , 0. , 0.125, -1. ]]) >>> result = match_template(image, template, pad_input=True) >>> np.round(result, 3) array([[-0.125, -0.125, -0.125, 0. , 0. , 0. ], [-0.125, 1. , -0.125, 0. , 0. , 0. ], [-0.125, -0.125, -0.125, 0. , 0. , 0. ], [ 0. , 0. , 0. , 0.125, 0.125, 0.125], [ 0. , 0. , 0. , 0.125, -1. , 0.125], [ 0. , 0. , 0. , 0.125, 0.125, 0.125]]) """ check_nD(image, (2, 3)) if image.ndim < template.ndim: raise ValueError("Dimensionality of template must be less than or " "equal to the dimensionality of image.") if np.any(np.less(image.shape, template.shape)): raise ValueError("Image must be larger than template.") image_shape = image.shape float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) pad_width = tuple((width, width) for width in template.shape) if mode == 'constant': image = np.pad(image, pad_width=pad_width, mode=mode, constant_values=constant_values) else: image = np.pad(image, pad_width=pad_width, mode=mode) # Use special case for 2-D images for much better performance in # computation of integral images if image.ndim == 2: image_window_sum = _window_sum_2d(image, template.shape) image_window_sum2 = _window_sum_2d(image ** 2, template.shape) elif image.ndim == 3: image_window_sum = _window_sum_3d(image, template.shape) image_window_sum2 = _window_sum_3d(image ** 2, template.shape) template_mean = template.mean() template_volume = np.prod(template.shape) template_ssd = np.sum((template - template_mean) ** 2) if image.ndim == 2: xcorr = fftconvolve(image, template[::-1, ::-1], mode="valid")[1:-1, 1:-1] elif image.ndim == 3: xcorr = fftconvolve(image, template[::-1, ::-1, ::-1], mode="valid")[1:-1, 1:-1, 1:-1] numerator = xcorr - image_window_sum * template_mean denominator = image_window_sum2 np.multiply(image_window_sum, image_window_sum, out=image_window_sum) np.divide(image_window_sum, template_volume, out=image_window_sum) denominator -= image_window_sum denominator *= template_ssd np.maximum(denominator, 0, out=denominator) # sqrt of negative number not allowed np.sqrt(denominator, out=denominator) response = np.zeros_like(xcorr, dtype=float_dtype) # avoid zero-division mask = denominator > np.finfo(float_dtype).eps response[mask] = numerator[mask] / denominator[mask] slices = [] for i in range(template.ndim): if pad_input: d0 = (template.shape[i] - 1) // 2 d1 = d0 + image_shape[i] else: d0 = template.shape[i] - 1 d1 = d0 + image_shape[i] - template.shape[i] + 1 slices.append(slice(d0, d1)) return response[tuple(slices)]