import math import numpy as np import pytest from numpy.testing import assert_almost_equal from skimage import feature from skimage.draw import disk from skimage.draw.draw3d import ellipsoid from skimage.feature import blob_dog, blob_doh, blob_log from skimage.feature.blob import _blob_overlap @pytest.mark.parametrize( 'dtype', [np.uint8, np.float16, np.float32, np.float64] ) @pytest.mark.parametrize('threshold_type', ['absolute', 'relative']) def test_blob_dog(dtype, threshold_type): r2 = math.sqrt(2) img = np.ones((512, 512), dtype=dtype) xs, ys = disk((400, 130), 5) img[xs, ys] = 255 xs, ys = disk((100, 300), 25) img[xs, ys] = 255 xs, ys = disk((200, 350), 45) img[xs, ys] = 255 if threshold_type == 'absolute': threshold = 2.0 if img.dtype.kind != 'f': # account for internal scaling to [0, 1] by img_as_float threshold /= img.ptp() threshold_rel = None elif threshold_type == 'relative': threshold = None threshold_rel = 0.5 blobs = blob_dog( img, min_sigma=4, max_sigma=50, threshold=threshold, threshold_rel=threshold_rel, ) radius = lambda x: r2 * x[2] s = sorted(blobs, key=radius) thresh = 5 ratio_thresh = 0.25 b = s[0] assert abs(b[0] - 400) <= thresh assert abs(b[1] - 130) <= thresh assert abs(radius(b) - 5) <= ratio_thresh * 5 b = s[1] assert abs(b[0] - 100) <= thresh assert abs(b[1] - 300) <= thresh assert abs(radius(b) - 25) <= ratio_thresh * 25 b = s[2] assert abs(b[0] - 200) <= thresh assert abs(b[1] - 350) <= thresh assert abs(radius(b) - 45) <= ratio_thresh * 45 # Testing no peaks img_empty = np.zeros((100, 100), dtype=dtype) assert blob_dog(img_empty).size == 0 @pytest.mark.parametrize( 'dtype', [np.uint8, np.float16, np.float32, np.float64] ) @pytest.mark.parametrize('threshold_type', ['absolute', 'relative']) def test_blob_dog_3d(dtype, threshold_type): # Testing 3D r = 10 pad = 10 im3 = ellipsoid(r, r, r) im3 = np.pad(im3, pad, mode='constant') if threshold_type == 'absolute': threshold = 0.001 threshold_rel = 0 elif threshold_type == 'relative': threshold = 0 threshold_rel = 0.5 blobs = blob_dog( im3, min_sigma=3, max_sigma=10, sigma_ratio=1.2, threshold=threshold, threshold_rel=threshold_rel, ) b = blobs[0] assert b.shape == (4,) assert b[0] == r + pad + 1 assert b[1] == r + pad + 1 assert b[2] == r + pad + 1 assert abs(math.sqrt(3) * b[3] - r) < 1.1 @pytest.mark.parametrize( 'dtype', [np.uint8, np.float16, np.float32, np.float64] ) @pytest.mark.parametrize('threshold_type', ['absolute', 'relative']) def test_blob_dog_3d_anisotropic(dtype, threshold_type): # Testing 3D anisotropic r = 10 pad = 10 im3 = ellipsoid(r / 2, r, r) im3 = np.pad(im3, pad, mode='constant') if threshold_type == 'absolute': threshold = 0.001 threshold_rel = None elif threshold_type == 'relative': threshold = None threshold_rel = 0.5 blobs = blob_dog( im3.astype(dtype, copy=False), min_sigma=[1.5, 3, 3], max_sigma=[5, 10, 10], sigma_ratio=1.2, threshold=threshold, threshold_rel=threshold_rel, ) b = blobs[0] assert b.shape == (6,) assert b[0] == r / 2 + pad + 1 assert b[1] == r + pad + 1 assert b[2] == r + pad + 1 assert abs(math.sqrt(3) * b[3] - r / 2) < 1.1 assert abs(math.sqrt(3) * b[4] - r) < 1.1 assert abs(math.sqrt(3) * b[5] - r) < 1.1 def test_blob_dog_excl_border(): # Testing exclude border # image where blob is 5 px from borders, radius 5 img = np.ones((512, 512)) xs, ys = disk((5, 5), 5) img[xs, ys] = 255 blobs = blob_dog( img, min_sigma=1.5, max_sigma=5, sigma_ratio=1.2, ) assert blobs.shape[0] == 1 b = blobs[0] assert b[0] == b[1] == 5, "blob should be 5 px from x and y borders" blobs = blob_dog( img, min_sigma=1.5, max_sigma=5, sigma_ratio=1.2, exclude_border=6, ) msg = "zero blobs should be detected, as only blob is 5 px from border" assert blobs.shape[0] == 0, msg @pytest.mark.parametrize('anisotropic', [False, True]) @pytest.mark.parametrize('ndim', [1, 2, 3, 4]) @pytest.mark.parametrize('function_name', ['blob_dog', 'blob_log']) def test_nd_blob_no_peaks_shape(function_name, ndim, anisotropic): # uniform image so no blobs will be found z = np.zeros((16,) * ndim, dtype=np.float32) if anisotropic: max_sigma = 8 + np.arange(ndim) else: max_sigma = 8 blob_func = getattr(feature, function_name) blobs = blob_func(z, max_sigma=max_sigma) # z.ndim + (z.ndim sigmas if anisotropic, only one sigma otherwise) expected_shape = 2 * z.ndim if anisotropic else z.ndim + 1 assert blobs.shape == (0, expected_shape) @pytest.mark.parametrize( 'dtype', [np.uint8, np.float16, np.float32, np.float64] ) @pytest.mark.parametrize('threshold_type', ['absolute', 'relative']) def test_blob_log(dtype, threshold_type): r2 = math.sqrt(2) img = np.ones((256, 256), dtype=dtype) xs, ys = disk((200, 65), 5) img[xs, ys] = 255 xs, ys = disk((80, 25), 15) img[xs, ys] = 255 xs, ys = disk((50, 150), 25) img[xs, ys] = 255 xs, ys = disk((100, 175), 30) img[xs, ys] = 255 if threshold_type == 'absolute': threshold = 1 if img.dtype.kind != 'f': # account for internal scaling to [0, 1] by img_as_float threshold /= img.ptp() threshold_rel = None elif threshold_type == 'relative': threshold = None threshold_rel = 0.5 blobs = blob_log(img, min_sigma=5, max_sigma=20, threshold=threshold, threshold_rel=threshold_rel) radius = lambda x: r2 * x[2] s = sorted(blobs, key=radius) thresh = 3 b = s[0] assert abs(b[0] - 200) <= thresh assert abs(b[1] - 65) <= thresh assert abs(radius(b) - 5) <= thresh b = s[1] assert abs(b[0] - 80) <= thresh assert abs(b[1] - 25) <= thresh assert abs(radius(b) - 15) <= thresh b = s[2] assert abs(b[0] - 50) <= thresh assert abs(b[1] - 150) <= thresh assert abs(radius(b) - 25) <= thresh b = s[3] assert abs(b[0] - 100) <= thresh assert abs(b[1] - 175) <= thresh assert abs(radius(b) - 30) <= thresh # Testing log scale blobs = blob_log( img, min_sigma=5, max_sigma=20, threshold=threshold, threshold_rel=threshold_rel, log_scale=True) b = s[0] assert abs(b[0] - 200) <= thresh assert abs(b[1] - 65) <= thresh assert abs(radius(b) - 5) <= thresh b = s[1] assert abs(b[0] - 80) <= thresh assert abs(b[1] - 25) <= thresh assert abs(radius(b) - 15) <= thresh b = s[2] assert abs(b[0] - 50) <= thresh assert abs(b[1] - 150) <= thresh assert abs(radius(b) - 25) <= thresh b = s[3] assert abs(b[0] - 100) <= thresh assert abs(b[1] - 175) <= thresh assert abs(radius(b) - 30) <= thresh # Testing no peaks img_empty = np.zeros((100, 100)) assert blob_log(img_empty).size == 0 def test_blob_log_no_warnings(): img = np.ones((11, 11)) xs, ys = disk((5, 5), 2) img[xs, ys] = 255 xs, ys = disk((7, 6), 2) img[xs, ys] = 255 blob_log(img, max_sigma=20, num_sigma=10, threshold=.1) def test_blob_log_3d(): # Testing 3D r = 6 pad = 10 im3 = ellipsoid(r, r, r) im3 = np.pad(im3, pad, mode='constant') blobs = blob_log(im3, min_sigma=3, max_sigma=10) b = blobs[0] assert b.shape == (4,) assert b[0] == r + pad + 1 assert b[1] == r + pad + 1 assert b[2] == r + pad + 1 assert abs(math.sqrt(3) * b[3] - r) < 1 def test_blob_log_3d_anisotropic(): # Testing 3D anisotropic r = 6 pad = 10 im3 = ellipsoid(r / 2, r, r) im3 = np.pad(im3, pad, mode='constant') blobs = blob_log( im3, min_sigma=[1, 2, 2], max_sigma=[5, 10, 10], ) b = blobs[0] assert b.shape == (6,) assert b[0] == r / 2 + pad + 1 assert b[1] == r + pad + 1 assert b[2] == r + pad + 1 assert abs(math.sqrt(3) * b[3] - r / 2) < 1 assert abs(math.sqrt(3) * b[4] - r) < 1 assert abs(math.sqrt(3) * b[5] - r) < 1 def test_blob_log_exclude_border(): # image where blob is 5 px from borders, radius 5 img = np.ones((512, 512)) xs, ys = disk((5, 5), 5) img[xs, ys] = 255 blobs = blob_log( img, min_sigma=1.5, max_sigma=5, ) assert blobs.shape[0] == 1 b = blobs[0] assert b[0] == b[1] == 5, "blob should be 5 px from x and y borders" blobs = blob_log( img, min_sigma=1.5, max_sigma=5, exclude_border=6, ) msg = "zero blobs should be detected, as only blob is 5 px from border" assert blobs.shape[0] == 0, msg @pytest.mark.parametrize("dtype", [np.uint8, np.float16, np.float32]) @pytest.mark.parametrize('threshold_type', ['absolute', 'relative']) def test_blob_doh(dtype, threshold_type): img = np.ones((512, 512), dtype=dtype) xs, ys = disk((400, 130), 20) img[xs, ys] = 255 xs, ys = disk((460, 50), 30) img[xs, ys] = 255 xs, ys = disk((100, 300), 40) img[xs, ys] = 255 xs, ys = disk((200, 350), 50) img[xs, ys] = 255 if threshold_type == 'absolute': # Note: have to either scale up threshold or rescale the image to the # range [0, 1] internally. threshold = 0.05 if img.dtype.kind == 'f': # account for lack of internal scaling to [0, 1] by img_as_float ptp = img.ptp() threshold *= ptp ** 2 threshold_rel = None elif threshold_type == 'relative': threshold = None threshold_rel = 0.5 blobs = blob_doh( img, min_sigma=1, max_sigma=60, num_sigma=10, threshold=threshold, threshold_rel=threshold_rel) radius = lambda x: x[2] s = sorted(blobs, key=radius) thresh = 4 b = s[0] assert abs(b[0] - 400) <= thresh assert abs(b[1] - 130) <= thresh assert abs(radius(b) - 20) <= thresh b = s[1] assert abs(b[0] - 460) <= thresh assert abs(b[1] - 50) <= thresh assert abs(radius(b) - 30) <= thresh b = s[2] assert abs(b[0] - 100) <= thresh assert abs(b[1] - 300) <= thresh assert abs(radius(b) - 40) <= thresh b = s[3] assert abs(b[0] - 200) <= thresh assert abs(b[1] - 350) <= thresh assert abs(radius(b) - 50) <= thresh def test_blob_doh_log_scale(): img = np.ones((512, 512), dtype=np.uint8) xs, ys = disk((400, 130), 20) img[xs, ys] = 255 xs, ys = disk((460, 50), 30) img[xs, ys] = 255 xs, ys = disk((100, 300), 40) img[xs, ys] = 255 xs, ys = disk((200, 350), 50) img[xs, ys] = 255 blobs = blob_doh( img, min_sigma=1, max_sigma=60, num_sigma=10, log_scale=True, threshold=.05) radius = lambda x: x[2] s = sorted(blobs, key=radius) thresh = 10 b = s[0] assert abs(b[0] - 400) <= thresh assert abs(b[1] - 130) <= thresh assert abs(radius(b) - 20) <= thresh b = s[2] assert abs(b[0] - 460) <= thresh assert abs(b[1] - 50) <= thresh assert abs(radius(b) - 30) <= thresh b = s[1] assert abs(b[0] - 100) <= thresh assert abs(b[1] - 300) <= thresh assert abs(radius(b) - 40) <= thresh b = s[3] assert abs(b[0] - 200) <= thresh assert abs(b[1] - 350) <= thresh assert abs(radius(b) - 50) <= thresh def test_blob_doh_no_peaks(): # Testing no peaks img_empty = np.zeros((100, 100)) assert blob_doh(img_empty).size == 0 def test_blob_doh_overlap(): img = np.ones((256, 256), dtype=np.uint8) xs, ys = disk((100, 100), 20) img[xs, ys] = 255 xs, ys = disk((120, 100), 30) img[xs, ys] = 255 blobs = blob_doh( img, min_sigma=1, max_sigma=60, num_sigma=10, threshold=.05 ) assert len(blobs) == 1 def test_blob_log_overlap_3d(): r1, r2 = 7, 6 pad1, pad2 = 11, 12 blob1 = ellipsoid(r1, r1, r1) blob1 = np.pad(blob1, pad1, mode='constant') blob2 = ellipsoid(r2, r2, r2) blob2 = np.pad(blob2, [(pad2, pad2), (pad2 - 9, pad2 + 9), (pad2, pad2)], mode='constant') im3 = np.logical_or(blob1, blob2) blobs = blob_log(im3, min_sigma=2, max_sigma=10, overlap=0.1) assert len(blobs) == 1 def test_blob_overlap_3d_anisotropic(): # Two spheres with distance between centers equal to radius # One sphere is much smaller than the other so about half of it is within # the bigger sphere. s3 = math.sqrt(3) overlap = _blob_overlap(np.array([0, 0, 0, 2 / s3, 10 / s3, 10 / s3]), np.array([0, 0, 10, 0.2 / s3, 1 / s3, 1 / s3]), sigma_dim=3) assert_almost_equal(overlap, 0.48125) overlap = _blob_overlap(np.array([0, 0, 0, 2 / s3, 10 / s3, 10 / s3]), np.array([2, 0, 0, 0.2 / s3, 1 / s3, 1 / s3]), sigma_dim=3) assert_almost_equal(overlap, 0.48125) def test_blob_log_anisotropic(): image = np.zeros((50, 50)) image[20, 10:20] = 1 isotropic_blobs = blob_log(image, min_sigma=0.5, max_sigma=2, num_sigma=3) assert len(isotropic_blobs) > 1 # many small blobs found in line ani_blobs = blob_log(image, min_sigma=[0.5, 5], max_sigma=[2, 20], num_sigma=3) # 10x anisotropy, line is 1x10 assert len(ani_blobs) == 1 # single anisotropic blob found def test_blob_log_overlap_3d_anisotropic(): r1, r2 = 7, 6 pad1, pad2 = 11, 12 blob1 = ellipsoid(r1, r1, r1) blob1 = np.pad(blob1, pad1, mode='constant') blob2 = ellipsoid(r2, r2, r2) blob2 = np.pad(blob2, [(pad2, pad2), (pad2 - 9, pad2 + 9), (pad2, pad2)], mode='constant') im3 = np.logical_or(blob1, blob2) blobs = blob_log(im3, min_sigma=[2, 2.01, 2.005], max_sigma=10, overlap=0.1) assert len(blobs) == 1 # Two circles with distance between centers equal to radius overlap = _blob_overlap(np.array([0, 0, 10 / math.sqrt(2)]), np.array([0, 10, 10 / math.sqrt(2)])) assert_almost_equal(overlap, 1./math.pi * (2 * math.acos(1./2) - math.sqrt(3)/2.)) def test_no_blob(): im = np.zeros((10, 10)) blobs = blob_log(im, min_sigma=2, max_sigma=5, num_sigma=4) assert len(blobs) == 0