import unittest import numpy as np from skimage._shared.testing import assert_equal from scipy.ndimage import binary_dilation, binary_erosion from skimage import data, feature from skimage.util import img_as_float class TestCanny(unittest.TestCase): def test_00_00_zeros(self): '''Test that the Canny filter finds no points for a blank field''' result = feature.canny(np.zeros((20, 20)), 4, 0, 0, np.ones((20, 20), bool)) self.assertFalse(np.any(result)) def test_00_01_zeros_mask(self): '''Test that the Canny filter finds no points in a masked image''' result = (feature.canny(np.random.uniform(size=(20, 20)), 4, 0, 0, np.zeros((20, 20), bool))) self.assertFalse(np.any(result)) def test_01_01_circle(self): '''Test that the Canny filter finds the outlines of a circle''' i, j = np.mgrid[-200:200, -200:200].astype(float) / 200 c = np.abs(np.sqrt(i * i + j * j) - .5) < .02 result = feature.canny(c.astype(float), 4, 0, 0, np.ones(c.shape, bool)) # # erode and dilate the circle to get rings that should contain the # outlines # cd = binary_dilation(c, iterations=3) ce = binary_erosion(c, iterations=3) cde = np.logical_and(cd, np.logical_not(ce)) self.assertTrue(np.all(cde[result])) # # The circle has a radius of 100. There are two rings here, one # for the inside edge and one for the outside. So that's # 100 * 2 * 2 * 3 for those places where pi is still 3. # The edge contains both pixels if there's a tie, so we # bump the count a little. point_count = np.sum(result) self.assertTrue(point_count > 1200) self.assertTrue(point_count < 1600) def test_01_02_circle_with_noise(self): '''Test that the Canny filter finds the circle outlines in a noisy image''' np.random.seed(0) i, j = np.mgrid[-200:200, -200:200].astype(float) / 200 c = np.abs(np.sqrt(i * i + j * j) - .5) < .02 cf = c.astype(float) * .5 + np.random.uniform(size=c.shape) * .5 result = feature.canny(cf, 4, .1, .2, np.ones(c.shape, bool)) # # erode and dilate the circle to get rings that should contain the # outlines # cd = binary_dilation(c, iterations=4) ce = binary_erosion(c, iterations=4) cde = np.logical_and(cd, np.logical_not(ce)) self.assertTrue(np.all(cde[result])) point_count = np.sum(result) self.assertTrue(point_count > 1200) self.assertTrue(point_count < 1600) def test_image_shape(self): self.assertRaises(ValueError, feature.canny, np.zeros((20, 20, 20)), 4, 0, 0) def test_mask_none(self): result1 = feature.canny(np.zeros((20, 20)), 4, 0, 0, np.ones((20, 20), bool)) result2 = feature.canny(np.zeros((20, 20)), 4, 0, 0) self.assertTrue(np.all(result1 == result2)) def test_use_quantiles(self): image = img_as_float(data.camera()[::100, ::100]) # Correct output produced manually with quantiles # of 0.8 and 0.6 for high and low respectively correct_output = np.array( [[False, False, False, False, False, False], [False, True, True, True, False, False], [False, False, False, True, False, False], [False, False, False, True, False, False], [False, False, True, True, False, False], [False, False, False, False, False, False]]) result = feature.canny(image, low_threshold=0.6, high_threshold=0.8, use_quantiles=True, mode='nearest') assert_equal(result, correct_output) def test_invalid_use_quantiles(self): image = img_as_float(data.camera()[::50, ::50]) self.assertRaises(ValueError, feature.canny, image, use_quantiles=True, low_threshold=0.5, high_threshold=3.6) self.assertRaises(ValueError, feature.canny, image, use_quantiles=True, low_threshold=-5, high_threshold=0.5) self.assertRaises(ValueError, feature.canny, image, use_quantiles=True, low_threshold=99, high_threshold=0.9) self.assertRaises(ValueError, feature.canny, image, use_quantiles=True, low_threshold=0.5, high_threshold=-100) # Example from issue #4282 image = data.camera() self.assertRaises(ValueError, feature.canny, image, use_quantiles=True, low_threshold=50, high_threshold=150) def test_dtype(self): """Check that the same output is produced regardless of image dtype.""" image_uint8 = data.camera() image_float = img_as_float(image_uint8) result_uint8 = feature.canny(image_uint8) result_float = feature.canny(image_float) assert_equal(result_uint8, result_float) low = 0.1 high = 0.2 assert_equal(feature.canny(image_float, 1.0, low, high), feature.canny(image_uint8, 1.0, 255 * low, 255 * high))