import numpy as np import pytest from numpy.testing import assert_almost_equal from skimage import color, data, draw, feature, img_as_float from skimage._shared import filters from skimage._shared._warnings import expected_warnings from skimage._shared.testing import fetch from skimage._shared.utils import _supported_float_type def test_hog_output_size(): img = img_as_float(data.astronaut()[:256, :].mean(axis=2)) fd = feature.hog(img, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(1, 1), block_norm='L1') assert len(fd) == 9 * (256 // 8) * (512 // 8) @pytest.mark.parametrize('dtype', [np.float32, np.float64]) def test_hog_output_correctness_l1_norm(dtype): img = color.rgb2gray(data.astronaut()).astype(dtype=dtype, copy=False) correct_output = np.load(fetch('data/astronaut_GRAY_hog_L1.npy')) output = feature.hog(img, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(3, 3), block_norm='L1', feature_vector=True, transform_sqrt=False, visualize=False) float_dtype = _supported_float_type(dtype) assert output.dtype == float_dtype decimal = 7 if float_dtype == np.float64 else 5 assert_almost_equal(output, correct_output, decimal=decimal) @pytest.mark.parametrize('dtype', [np.float32, np.float64]) def test_hog_output_correctness_l2hys_norm(dtype): img = color.rgb2gray(data.astronaut()).astype(dtype=dtype, copy=False) correct_output = np.load(fetch('data/astronaut_GRAY_hog_L2-Hys.npy')) output = feature.hog(img, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(3, 3), block_norm='L2-Hys', feature_vector=True, transform_sqrt=False, visualize=False) float_dtype = _supported_float_type(dtype) assert output.dtype == float_dtype decimal = 7 if float_dtype == np.float64 else 5 assert_almost_equal(output, correct_output, decimal=decimal) def test_hog_image_size_cell_size_mismatch(): image = data.camera()[:150, :200] fd = feature.hog(image, orientations=9, pixels_per_cell=(8, 8), cells_per_block=(1, 1), block_norm='L1') assert len(fd) == 9 * (150 // 8) * (200 // 8) def test_hog_odd_cell_size(): img = np.zeros((3, 3)) img[2, 2] = 1 correct_output = np.zeros((9, )) correct_output[0] = 0.5 correct_output[4] = 0.5 output = feature.hog(img, pixels_per_cell=(3, 3), cells_per_block=(1, 1), block_norm='L1') assert_almost_equal(output, correct_output, decimal=1) def test_hog_basic_orientations_and_data_types(): # scenario: # 1) create image (with float values) where upper half is filled by # zeros, bottom half by 100 # 2) create unsigned integer version of this image # 3) calculate feature.hog() for both images, both with 'transform_sqrt' # option enabled and disabled # 4) verify that all results are equal where expected # 5) verify that computed feature vector is as expected # 6) repeat the scenario for 90, 180 and 270 degrees rotated images # size of testing image width = height = 35 image0 = np.zeros((height, width), dtype='float') image0[height // 2:] = 100 for rot in range(4): # rotate by 0, 90, 180 and 270 degrees image_float = np.rot90(image0, rot) # create uint8 image from image_float image_uint8 = image_float.astype('uint8') (hog_float, hog_img_float) = feature.hog( image_float, orientations=4, pixels_per_cell=(8, 8), cells_per_block=(1, 1), visualize=True, transform_sqrt=False, block_norm='L1') (hog_uint8, hog_img_uint8) = feature.hog( image_uint8, orientations=4, pixels_per_cell=(8, 8), cells_per_block=(1, 1), visualize=True, transform_sqrt=False, block_norm='L1') (hog_float_norm, hog_img_float_norm) = feature.hog( image_float, orientations=4, pixels_per_cell=(8, 8), cells_per_block=(1, 1), visualize=True, transform_sqrt=True, block_norm='L1') (hog_uint8_norm, hog_img_uint8_norm) = feature.hog( image_uint8, orientations=4, pixels_per_cell=(8, 8), cells_per_block=(1, 1), visualize=True, transform_sqrt=True, block_norm='L1') # set to True to enable manual debugging with graphical output, # must be False for automatic testing if False: import matplotlib.pyplot as plt plt.figure() plt.subplot(2, 3, 1) plt.imshow(image_float) plt.colorbar() plt.title('image') plt.subplot(2, 3, 2) plt.imshow(hog_img_float) plt.colorbar() plt.title('HOG result visualisation (float img)') plt.subplot(2, 3, 5) plt.imshow(hog_img_uint8) plt.colorbar() plt.title('HOG result visualisation (uint8 img)') plt.subplot(2, 3, 3) plt.imshow(hog_img_float_norm) plt.colorbar() plt.title('HOG result (transform_sqrt) visualisation (float img)') plt.subplot(2, 3, 6) plt.imshow(hog_img_uint8_norm) plt.colorbar() plt.title('HOG result (transform_sqrt) visualisation (uint8 img)') plt.show() # results (features and visualisation) for float and uint8 images must # be almost equal assert_almost_equal(hog_float, hog_uint8) assert_almost_equal(hog_img_float, hog_img_uint8) # resulting features should be almost equal # when 'transform_sqrt' is enabled # or disabled (for current simple testing image) assert_almost_equal(hog_float, hog_float_norm, decimal=4) assert_almost_equal(hog_float, hog_uint8_norm, decimal=4) # reshape resulting feature vector to matrix with 4 columns (each # corresponding to one of 4 directions); only one direction should # contain nonzero values (this is manually determined for testing # image) actual = np.max(hog_float.reshape(-1, 4), axis=0) if rot in [0, 2]: # image is rotated by 0 and 180 degrees desired = [0, 0, 1, 0] elif rot in [1, 3]: # image is rotated by 90 and 270 degrees desired = [1, 0, 0, 0] else: raise Exception('Result is not determined for this rotation.') assert_almost_equal(actual, desired, decimal=2) def test_hog_orientations_circle(): # scenario: # 1) create image with blurred circle in the middle # 2) calculate feature.hog() # 3) verify that the resulting feature vector contains uniformly # distributed values for all orientations, i.e. no orientation is # lost or emphasized # 4) repeat the scenario for other 'orientations' option # size of testing image width = height = 100 image = np.zeros((height, width)) rr, cc = draw.disk((int(height / 2), int(width / 2)), int(width / 3)) image[rr, cc] = 100 image = filters.gaussian(image, 2, mode='reflect') for orientations in range(2, 15): (hog, hog_img) = feature.hog(image, orientations=orientations, pixels_per_cell=(8, 8), cells_per_block=(1, 1), visualize=True, transform_sqrt=False, block_norm='L1') # set to True to enable manual debugging with graphical output, # must be False for automatic testing if False: import matplotlib.pyplot as plt plt.figure() plt.subplot(1, 2, 1) plt.imshow(image) plt.colorbar() plt.title('image_float') plt.subplot(1, 2, 2) plt.imshow(hog_img) plt.colorbar() plt.title('HOG result visualisation, ' 'orientations=%d' % (orientations)) plt.show() # reshape resulting feature vector to matrix with N columns (each # column corresponds to one direction), hog_matrix = hog.reshape(-1, orientations) # compute mean values in the resulting feature vector for each # direction, these values should be almost equal to the global mean # value (since the image contains a circle), i.e., all directions have # same contribution to the result actual = np.mean(hog_matrix, axis=0) desired = np.mean(hog_matrix) assert_almost_equal(actual, desired, decimal=1) def test_hog_visualization_orientation(): """Test that the visualization produces a line with correct orientation The hog visualization is expected to draw line segments perpendicular to the midpoints of orientation bins. This example verifies that when orientations=3 and the gradient is entirely in the middle bin (bisected by the y-axis), the line segment drawn by the visualization is horizontal. """ width = height = 11 image = np.zeros((height, width), dtype='float') image[height // 2:] = 1 _, hog_image = feature.hog( image, orientations=3, pixels_per_cell=(width, height), cells_per_block=(1, 1), visualize=True, block_norm='L1' ) middle_index = height // 2 indices_excluding_middle = [x for x in range(height) if x != middle_index] assert (hog_image[indices_excluding_middle, :] == 0).all() assert (hog_image[middle_index, 1:-1] > 0).all() def test_hog_block_normalization_incorrect_error(): img = np.eye(4) with pytest.raises(ValueError): feature.hog(img, block_norm='Linf') @pytest.mark.parametrize("shape,multichannel", [ ((3, 3, 3), False), ((3, 3), True), ((3, 3, 3, 3), True), ]) def test_hog_incorrect_dimensions(shape, multichannel): img = np.zeros(shape) with pytest.raises(ValueError): with expected_warnings(["`multichannel` is a deprecated argument"]): feature.hog(img, multichannel=multichannel, block_norm='L1') def test_hog_output_equivariance_deprecated_multichannel(): img = data.astronaut() img[:, :, (1, 2)] = 0 with expected_warnings(["`multichannel` is a deprecated argument"]): hog_ref = feature.hog(img, multichannel=True, block_norm='L1') for n in (1, 2): with expected_warnings(["`multichannel` is a deprecated argument"]): hog_fact = feature.hog(np.roll(img, n, axis=2), multichannel=True, block_norm='L1') assert_almost_equal(hog_ref, hog_fact) # repeat prior test, but check for positional multichannel warning with expected_warnings(["Providing the `multichannel` argument"]): hog_fact = feature.hog(np.roll(img, n, axis=2), 9, (8, 8), (3, 3), 'L1', False, False, True, True) assert_almost_equal(hog_ref, hog_fact) @pytest.mark.parametrize('channel_axis', [0, 1, -1, -2]) def test_hog_output_equivariance_channel_axis(channel_axis): img = data.astronaut()[:64, :32] img[:, :, (1, 2)] = 0 img = np.moveaxis(img, -1, channel_axis) hog_ref = feature.hog(img, channel_axis=channel_axis, block_norm='L1') for n in (1, 2): hog_fact = feature.hog(np.roll(img, n, axis=channel_axis), channel_axis=channel_axis, block_norm='L1') assert_almost_equal(hog_ref, hog_fact)