import numpy as np import pytest from numpy.testing import assert_almost_equal, assert_equal from skimage import data from skimage._shared.testing import test_parallel, xfail, arch32 from skimage.feature import ORB from skimage.util.dtype import _convert img = data.coins() @test_parallel() @pytest.mark.parametrize( 'dtype', ['float32', 'float64', 'uint8', 'uint16', 'int64'] ) def test_keypoints_orb_desired_no_of_keypoints(dtype): _img = _convert(img, dtype) detector_extractor = ORB(n_keypoints=10, fast_n=12, fast_threshold=0.20) detector_extractor.detect(_img) exp_rows = np.array([141., 108., 214.56, 131., 214.272, 67., 206., 177., 108., 141.]) exp_cols = np.array([323., 328., 282.24, 292., 281.664, 85., 260., 284., 328.8, 267.]) exp_scales = np.array([1, 1, 1.44, 1, 1.728, 1, 1, 1, 1.2, 1]) exp_orientations = np.array([-53.97446153, 59.5055285, -96.01885186, -149.70789506, -94.70171899, -45.76429535, -51.49752849, 113.57081195, 63.30428063, -79.56091118]) exp_response = np.array([1.01168357, 0.82934145, 0.67784179, 0.57176438, 0.56637459, 0.52248355, 0.43696175, 0.42992376, 0.37700486, 0.36126832]) if np.dtype(dtype) == np.float32: assert detector_extractor.scales.dtype == np.float32 assert detector_extractor.responses.dtype == np.float32 assert detector_extractor.orientations.dtype == np.float32 else: assert detector_extractor.scales.dtype == np.float64 assert detector_extractor.responses.dtype == np.float64 assert detector_extractor.orientations.dtype == np.float64 assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0]) assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1]) assert_almost_equal(exp_scales, detector_extractor.scales) assert_almost_equal(exp_response, detector_extractor.responses, 5) assert_almost_equal(exp_orientations, np.rad2deg(detector_extractor.orientations), 4) detector_extractor.detect_and_extract(img) assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0]) assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1]) @pytest.mark.parametrize( 'dtype', ['float32', 'float64', 'uint8', 'uint16', 'int64'] ) def test_keypoints_orb_less_than_desired_no_of_keypoints(dtype): _img = _convert(img, dtype) detector_extractor = ORB(n_keypoints=15, fast_n=12, fast_threshold=0.33, downscale=2, n_scales=2) detector_extractor.detect(_img) exp_rows = np.array([108., 203., 140., 65., 58.]) exp_cols = np.array([293., 267., 202., 130., 291.]) exp_scales = np.array([1., 1., 1., 1., 1.]) exp_orientations = np.array([151.93906, -56.90052, -79.46341, -59.42996, -158.26941]) exp_response = np.array([-0.1764169, 0.2652126, -0.0324343, 0.0400902, 0.2667641]) assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0]) assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1]) assert_almost_equal(exp_scales, detector_extractor.scales) assert_almost_equal(exp_response, detector_extractor.responses) assert_almost_equal(exp_orientations, np.rad2deg(detector_extractor.orientations), 3) detector_extractor.detect_and_extract(img) assert_almost_equal(exp_rows, detector_extractor.keypoints[:, 0]) assert_almost_equal(exp_cols, detector_extractor.keypoints[:, 1]) @xfail(condition=arch32, reason=('Known test failure on 32-bit platforms. See links for ' 'details: ' 'https://github.com/scikit-image/scikit-image/issues/3091 ' 'https://github.com/scikit-image/scikit-image/issues/2529')) def test_descriptor_orb(): detector_extractor = ORB(fast_n=12, fast_threshold=0.20) exp_descriptors = np.array([[0, 0, 0, 1, 0, 0, 0, 1, 0, 1], [1, 1, 0, 1, 0, 0, 0, 1, 0, 1], [1, 1, 0, 0, 1, 0, 0, 0, 1, 1], [1, 1, 1, 0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 0, 1, 1, 1, 1, 1], [1, 0, 0, 1, 1, 0, 0, 0, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 0, 0, 0, 1, 1, 1], [0, 1, 1, 0, 0, 1, 1, 0, 1, 1], [1, 1, 0, 0, 0, 0, 0, 0, 1, 1], [1, 0, 0, 0, 0, 1, 0, 1, 1, 1], [1, 0, 1, 1, 1, 0, 1, 0, 1, 0], [0, 0, 1, 1, 0, 0, 0, 0, 1, 1], [0, 1, 1, 0, 0, 0, 1, 0, 0, 1], [0, 1, 1, 0, 0, 0, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0], [0, 0, 1, 1, 1, 0, 1, 0, 0, 1], [0, 1, 0, 0, 0, 0, 0, 0, 1, 0]], dtype=bool) detector_extractor.detect(img) detector_extractor.extract(img, detector_extractor.keypoints, detector_extractor.scales, detector_extractor.orientations) assert_equal(exp_descriptors, detector_extractor.descriptors[100:120, 10:20]) detector_extractor.detect_and_extract(img) assert_equal(exp_descriptors, detector_extractor.descriptors[100:120, 10:20]) keypoints_count = detector_extractor.keypoints.shape[0] assert keypoints_count == detector_extractor.descriptors.shape[0] assert keypoints_count == detector_extractor.orientations.shape[0] assert keypoints_count == detector_extractor.responses.shape[0] assert keypoints_count == detector_extractor.scales.shape[0] def test_no_descriptors_extracted_orb(): img = np.ones((128, 128)) detector_extractor = ORB() with pytest.raises(RuntimeError): detector_extractor.detect_and_extract(img)