import numpy as np from ..util import img_as_float from .._shared.utils import _supported_float_type, check_nD class FeatureDetector(object): def __init__(self): self.keypoints_ = np.array([]) def detect(self, image): """Detect keypoints in image. Parameters ---------- image : 2D array Input image. """ raise NotImplementedError() class DescriptorExtractor(object): def __init__(self): self.descriptors_ = np.array([]) def extract(self, image, keypoints): """Extract feature descriptors in image for given keypoints. Parameters ---------- image : 2D array Input image. keypoints : (N, 2) array Keypoint locations as ``(row, col)``. """ raise NotImplementedError() def plot_matches(ax, image1, image2, keypoints1, keypoints2, matches, keypoints_color='k', matches_color=None, only_matches=False, alignment='horizontal'): """Plot matched features. Parameters ---------- ax : matplotlib.axes.Axes Matches and image are drawn in this ax. image1 : (N, M [, 3]) array First grayscale or color image. image2 : (N, M [, 3]) array Second grayscale or color image. keypoints1 : (K1, 2) array First keypoint coordinates as ``(row, col)``. keypoints2 : (K2, 2) array Second keypoint coordinates as ``(row, col)``. matches : (Q, 2) array Indices of corresponding matches in first and second set of descriptors, where ``matches[:, 0]`` denote the indices in the first and ``matches[:, 1]`` the indices in the second set of descriptors. keypoints_color : matplotlib color, optional Color for keypoint locations. matches_color : matplotlib color, optional Color for lines which connect keypoint matches. By default the color is chosen randomly. only_matches : bool, optional Whether to only plot matches and not plot the keypoint locations. alignment : {'horizontal', 'vertical'}, optional Whether to show images side by side, ``'horizontal'``, or one above the other, ``'vertical'``. """ image1 = img_as_float(image1) image2 = img_as_float(image2) new_shape1 = list(image1.shape) new_shape2 = list(image2.shape) if image1.shape[0] < image2.shape[0]: new_shape1[0] = image2.shape[0] elif image1.shape[0] > image2.shape[0]: new_shape2[0] = image1.shape[0] if image1.shape[1] < image2.shape[1]: new_shape1[1] = image2.shape[1] elif image1.shape[1] > image2.shape[1]: new_shape2[1] = image1.shape[1] if new_shape1 != image1.shape: new_image1 = np.zeros(new_shape1, dtype=image1.dtype) new_image1[:image1.shape[0], :image1.shape[1]] = image1 image1 = new_image1 if new_shape2 != image2.shape: new_image2 = np.zeros(new_shape2, dtype=image2.dtype) new_image2[:image2.shape[0], :image2.shape[1]] = image2 image2 = new_image2 offset = np.array(image1.shape) if alignment == 'horizontal': image = np.concatenate([image1, image2], axis=1) offset[0] = 0 elif alignment == 'vertical': image = np.concatenate([image1, image2], axis=0) offset[1] = 0 else: mesg = (f"plot_matches accepts either 'horizontal' or 'vertical' for " f"alignment, but '{alignment}' was given. See " f"https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.plot_matches " # noqa f"for details.") raise ValueError(mesg) if not only_matches: ax.scatter(keypoints1[:, 1], keypoints1[:, 0], facecolors='none', edgecolors=keypoints_color) ax.scatter(keypoints2[:, 1] + offset[1], keypoints2[:, 0] + offset[0], facecolors='none', edgecolors=keypoints_color) ax.imshow(image, cmap='gray') ax.axis((0, image1.shape[1] + offset[1], image1.shape[0] + offset[0], 0)) rng = np.random.default_rng() for i in range(matches.shape[0]): idx1 = matches[i, 0] idx2 = matches[i, 1] if matches_color is None: color = rng.random(3) else: color = matches_color ax.plot((keypoints1[idx1, 1], keypoints2[idx2, 1] + offset[1]), (keypoints1[idx1, 0], keypoints2[idx2, 0] + offset[0]), '-', color=color) def _prepare_grayscale_input_2D(image): image = np.squeeze(image) check_nD(image, 2) image = img_as_float(image) float_dtype = _supported_float_type(image.dtype) return image.astype(float_dtype, copy=False) def _prepare_grayscale_input_nD(image): image = np.squeeze(image) check_nD(image, range(2, 6)) image = img_as_float(image) float_dtype = _supported_float_type(image.dtype) return image.astype(float_dtype, copy=False) def _mask_border_keypoints(image_shape, keypoints, distance): """Mask coordinates that are within certain distance from the image border. Parameters ---------- image_shape : (2, ) array_like Shape of the image as ``(rows, cols)``. keypoints : (N, 2) array Keypoint coordinates as ``(rows, cols)``. distance : int Image border distance. Returns ------- mask : (N, ) bool array Mask indicating if pixels are within the image (``True``) or in the border region of the image (``False``). """ rows = image_shape[0] cols = image_shape[1] mask = (((distance - 1) < keypoints[:, 0]) & (keypoints[:, 0] < (rows - distance + 1)) & ((distance - 1) < keypoints[:, 1]) & (keypoints[:, 1] < (cols - distance + 1))) return mask