import numpy as np from skimage.graph._graph import pixel_graph, central_pixel mask = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 0]], dtype=bool) image = np.random.default_rng().random(mask.shape) def test_small_graph(): g, n = pixel_graph(mask, connectivity=2) assert g.shape == (4, 4) assert len(g.data) == 8 np.testing.assert_allclose(np.unique(g.data), [1, np.sqrt(2)]) np.testing.assert_array_equal(n, [0, 4, 5, 7]) def test_central_pixel(): g, n = pixel_graph(mask, connectivity=2) px, ds = central_pixel(g, n, shape=mask.shape) np.testing.assert_array_equal(px, (1, 1)) s2 = np.sqrt(2) np.testing.assert_allclose(ds, [s2*3 + 2, s2 + 2, s2*2 + 2, s2*2 + 2]) # test raveled coordinate px, _ = central_pixel(g, n) assert px == 4 # test no nodes given px, _ = central_pixel(g) assert px == 1 def test_edge_function(): def edge_func(values_src, values_dst, distances): return np.abs(values_src - values_dst) + distances g, n = pixel_graph( image, mask=mask, connectivity=2, edge_function=edge_func ) s2 = np.sqrt(2) np.testing.assert_allclose(g[0, 1], np.abs(image[0, 0] - image[1, 1]) + s2) np.testing.assert_allclose(g[1, 2], np.abs(image[1, 1] - image[1, 2]) + 1) np.testing.assert_array_equal(n, [0, 4, 5, 7]) def test_default_edge_func(): g, n = pixel_graph(image, spacing=np.array([0.78, 0.78])) num_edges = len(g.data) // 2 # each edge appears in both directions assert num_edges == 12 # lattice in a (3, 3) grid np.testing.assert_almost_equal( g[0, 1], 0.78 * np.abs(image[0, 0] - image[0, 1]) ) np.testing.assert_array_equal(n, np.arange(image.size)) if __name__ == '__main__': test_edge_function()