import os import numpy as np import imageio from skimage import data_dir from skimage.io.collection import ImageCollection, MultiImage, alphanumeric_key from skimage.io import reset_plugins from skimage._shared import testing from skimage._shared.testing import assert_equal, assert_allclose, fetch def test_string_split(): test_string = 'z23a' test_str_result = ['z', 23, 'a'] assert_equal(alphanumeric_key(test_string), test_str_result) def test_string_sort(): filenames = ['f9.10.png', 'f9.9.png', 'f10.10.png', 'f10.9.png', 'e9.png', 'e10.png', 'em.png'] expected_filenames = ['e9.png', 'e10.png', 'em.png', 'f9.9.png', 'f9.10.png', 'f10.9.png', 'f10.10.png'] sorted_filenames = sorted(filenames, key=alphanumeric_key) assert_equal(expected_filenames, sorted_filenames) def test_imagecollection_input(): """Test function for ImageCollection. The new behavior (implemented in 0.16) allows the `pattern` argument to accept a list of strings as the input. Notes ----- If correct, `images` will receive three images. """ # Ensure that these images are part of the legacy datasets # this means they will always be available in the user's install # regarless of the availability of pooch pattern = [os.path.join(data_dir, pic) for pic in ['coffee.png', 'chessboard_GRAY.png', 'rocket.jpg']] images = ImageCollection(pattern) assert len(images) == 3 class TestImageCollection(): pattern = [os.path.join(data_dir, pic) for pic in ['brick.png', 'color.png']] pattern_matched = [os.path.join(data_dir, pic) for pic in ['brick.png', 'moon.png']] def setup_method(self): reset_plugins() # Generic image collection with images of different shapes. self.images = ImageCollection(self.pattern) # Image collection with images having shapes that match. self.images_matched = ImageCollection(self.pattern_matched) # Same images as a collection of frames self.frames_matched = MultiImage(self.pattern_matched) def test_len(self): assert len(self.images) == 2 def test_getitem(self): num = len(self.images) for i in range(-num, num): assert isinstance(self.images[i], np.ndarray) assert_allclose(self.images[0], self.images[-num]) def return_img(n): return self.images[n] with testing.raises(IndexError): return_img(num) with testing.raises(IndexError): return_img(-num - 1) def test_slicing(self): assert type(self.images[:]) is ImageCollection assert len(self.images[:]) == 2 assert len(self.images[:1]) == 1 assert len(self.images[1:]) == 1 assert_allclose(self.images[0], self.images[:1][0]) assert_allclose(self.images[1], self.images[1:][0]) assert_allclose(self.images[1], self.images[::-1][0]) assert_allclose(self.images[0], self.images[::-1][1]) def test_files_property(self): assert isinstance(self.images.files, list) def set_files(f): self.images.files = f with testing.raises(AttributeError): set_files('newfiles') def test_custom_load_func_w_kwarg(self): load_pattern = fetch('data/no_time_for_that_tiny.gif') def load_fn(f, step): vid = imageio.get_reader(f) seq = [v for v in vid.iter_data()] return seq[::step] ic = ImageCollection(load_pattern, load_func=load_fn, step=3) # Each file should map to one image (array). assert len(ic) == 1 # GIF file has 24 frames, so 24 / 3 equals 8. assert len(ic[0]) == 8 def test_custom_load_func(self): def load_fn(x): return x ic = ImageCollection(os.pathsep.join(self.pattern), load_func=load_fn) assert_equal(ic[0], self.pattern[0]) def test_concatenate(self): array = self.images_matched.concatenate() expected_shape = (len(self.images_matched),) + self.images[0].shape assert_equal(array.shape, expected_shape) def test_concatenate_mismatched_image_shapes(self): with testing.raises(ValueError): self.images.concatenate() def test_multiimage_imagecollection(self): assert_equal(self.images_matched[0], self.frames_matched[0]) assert_equal(self.images_matched[1], self.frames_matched[1])