import numpy as np import pytest from skimage import io from skimage._shared._warnings import expected_warnings plt = pytest.importorskip("matplotlib.pyplot") def setup(): io.reset_plugins() # test images. Note that they don't have their full range for their dtype, # but we still expect the display range to equal the full dtype range. im8 = np.array([[0, 64], [128, 240]], np.uint8) im16 = im8.astype(np.uint16) * 256 im64 = im8.astype(np.uint64) imf = im8 / 255 im_lo = imf / 1000 im_hi = imf + 10 imshow_expected_warnings = [ r"tight_layout : falling back to Agg|\A\Z", r"tight_layout: falling back to Agg|\A\Z", # formatting change in mpl # Maptlotlib 2.2.3 seems to use np.asscalar which issues a warning # with numpy 1.16 # Matplotlib 2.2.3 is the last supported version for python 2.7 r"np.asscalar|\A\Z" ] def n_subplots(ax_im): """Return the number of subplots in the figure containing an ``AxesImage``. Parameters ---------- ax_im : matplotlib.pyplot.AxesImage object The input ``AxesImage``. Returns ------- n : int The number of subplots in the corresponding figure. Notes ----- This function is intended to check whether a colorbar was drawn, in which case two subplots are expected. For standard imshows, one subplot is expected. """ return len(ax_im.get_figure().get_axes()) def test_uint8(): plt.figure() with expected_warnings(imshow_expected_warnings + [r"CObject type is marked|\A\Z"]): ax_im = io.imshow(im8) assert ax_im.cmap.name == 'gray' assert ax_im.get_clim() == (0, 255) assert n_subplots(ax_im) == 1 assert ax_im.colorbar is None def test_uint16(): plt.figure() with expected_warnings(imshow_expected_warnings + [r"CObject type is marked|\A\Z"]): ax_im = io.imshow(im16) assert ax_im.cmap.name == 'gray' assert ax_im.get_clim() == (0, 65535) assert n_subplots(ax_im) == 1 assert ax_im.colorbar is None def test_float(): plt.figure() with expected_warnings(imshow_expected_warnings + [r"CObject type is marked|\A\Z"]): ax_im = io.imshow(imf) assert ax_im.cmap.name == 'gray' assert ax_im.get_clim() == (0, 1) assert n_subplots(ax_im) == 1 assert ax_im.colorbar is None def test_low_data_range(): with expected_warnings(imshow_expected_warnings + ["Low image data range|CObject type is marked"]): ax_im = io.imshow(im_lo) assert ax_im.get_clim() == (im_lo.min(), im_lo.max()) # check that a colorbar was created assert ax_im.colorbar is not None def test_outside_standard_range(): plt.figure() # Warning raised by matplotlib on Windows: # "The CObject type is marked Pending Deprecation in Python 2.7. # Please use capsule objects instead." # Ref: https://docs.python.org/2/c-api/cobject.html with expected_warnings(imshow_expected_warnings + ["out of standard range|CObject type is marked"]): ax_im = io.imshow(im_hi) assert ax_im.get_clim() == (im_hi.min(), im_hi.max()) assert n_subplots(ax_im) == 2 assert ax_im.colorbar is not None def test_nonstandard_type(): plt.figure() # Warning raised by matplotlib on Windows: # "The CObject type is marked Pending Deprecation in Python 2.7. # Please use capsule objects instead." # Ref: https://docs.python.org/2/c-api/cobject.html with expected_warnings(imshow_expected_warnings + ["Low image data range|CObject type is marked"]): ax_im = io.imshow(im64) assert ax_im.get_clim() == (im64.min(), im64.max()) assert n_subplots(ax_im) == 2 assert ax_im.colorbar is not None def test_signed_image(): plt.figure() im_signed = np.array([[-0.5, -0.2], [0.1, 0.4]]) with expected_warnings(imshow_expected_warnings + [r"CObject type is marked|\A\Z"]): ax_im = io.imshow(im_signed) assert ax_im.get_clim() == (-0.5, 0.5) assert n_subplots(ax_im) == 2 assert ax_im.colorbar is not None