import numpy as np from .._shared.utils import _supported_float_type, check_nD from . import _moments_cy import itertools def moments_coords(coords, order=3): """Calculate all raw image moments up to a certain order. The following properties can be calculated from raw image moments: * Area as: ``M[0, 0]``. * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}. Note that raw moments are neither translation, scale nor rotation invariant. Parameters ---------- coords : (N, D) double or uint8 array Array of N points that describe an image of D dimensionality in Cartesian space. order : int, optional Maximum order of moments. Default is 3. Returns ------- M : (``order + 1``, ``order + 1``, ...) array Raw image moments. (D dimensions) References ---------- .. [1] Johannes Kilian. Simple Image Analysis By Moments. Durham University, version 0.2, Durham, 2001. Examples -------- >>> coords = np.array([[row, col] ... for row in range(13, 17) ... for col in range(14, 18)], dtype=np.double) >>> M = moments_coords(coords) >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0]) >>> centroid (14.5, 15.5) """ return moments_coords_central(coords, 0, order=order) def moments_coords_central(coords, center=None, order=3): """Calculate all central image moments up to a certain order. The following properties can be calculated from raw image moments: * Area as: ``M[0, 0]``. * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}. Note that raw moments are neither translation, scale nor rotation invariant. Parameters ---------- coords : (N, D) double or uint8 array Array of N points that describe an image of D dimensionality in Cartesian space. A tuple of coordinates as returned by ``np.nonzero`` is also accepted as input. center : tuple of float, optional Coordinates of the image centroid. This will be computed if it is not provided. order : int, optional Maximum order of moments. Default is 3. Returns ------- Mc : (``order + 1``, ``order + 1``, ...) array Central image moments. (D dimensions) References ---------- .. [1] Johannes Kilian. Simple Image Analysis By Moments. Durham University, version 0.2, Durham, 2001. Examples -------- >>> coords = np.array([[row, col] ... for row in range(13, 17) ... for col in range(14, 18)]) >>> moments_coords_central(coords) array([[16., 0., 20., 0.], [ 0., 0., 0., 0.], [20., 0., 25., 0.], [ 0., 0., 0., 0.]]) As seen above, for symmetric objects, odd-order moments (columns 1 and 3, rows 1 and 3) are zero when centered on the centroid, or center of mass, of the object (the default). If we break the symmetry by adding a new point, this no longer holds: >>> coords2 = np.concatenate((coords, [[17, 17]]), axis=0) >>> np.round(moments_coords_central(coords2), ... decimals=2) # doctest: +NORMALIZE_WHITESPACE array([[17. , 0. , 22.12, -2.49], [ 0. , 3.53, 1.73, 7.4 ], [25.88, 6.02, 36.63, 8.83], [ 4.15, 19.17, 14.8 , 39.6 ]]) Image moments and central image moments are equivalent (by definition) when the center is (0, 0): >>> np.allclose(moments_coords(coords), ... moments_coords_central(coords, (0, 0))) True """ if isinstance(coords, tuple): # This format corresponds to coordinate tuples as returned by # e.g. np.nonzero: (row_coords, column_coords). # We represent them as an npoints x ndim array. coords = np.stack(coords, axis=-1) check_nD(coords, 2) ndim = coords.shape[1] float_type = _supported_float_type(coords.dtype) if center is None: center = np.mean(coords, axis=0, dtype=float) # center the coordinates coords = coords.astype(float_type, copy=False) - center # generate all possible exponents for each axis in the given set of points # produces a matrix of shape (N, D, order + 1) coords = np.stack([coords ** c for c in range(order + 1)], axis=-1) # add extra dimensions for proper broadcasting coords = coords.reshape(coords.shape + (1,) * (ndim - 1)) calc = 1 for axis in range(ndim): # isolate each point's axis isolated_axis = coords[:, axis] # rotate orientation of matrix for proper broadcasting isolated_axis = np.moveaxis(isolated_axis, 1, 1 + axis) # calculate the moments for each point, one axis at a time calc = calc * isolated_axis # sum all individual point moments to get our final answer Mc = np.sum(calc, axis=0) return Mc def moments(image, order=3): """Calculate all raw image moments up to a certain order. The following properties can be calculated from raw image moments: * Area as: ``M[0, 0]``. * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}. Note that raw moments are neither translation, scale nor rotation invariant. Parameters ---------- image : nD double or uint8 array Rasterized shape as image. order : int, optional Maximum order of moments. Default is 3. Returns ------- m : (``order + 1``, ``order + 1``) array Raw image moments. References ---------- .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing: Core Algorithms. Springer-Verlag, London, 2009. .. [2] B. Jähne. Digital Image Processing. Springer-Verlag, Berlin-Heidelberg, 6. edition, 2005. .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features, from Lecture notes in computer science, p. 676. Springer, Berlin, 1993. .. [4] https://en.wikipedia.org/wiki/Image_moment Examples -------- >>> image = np.zeros((20, 20), dtype=np.double) >>> image[13:17, 13:17] = 1 >>> M = moments(image) >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0]) >>> centroid (14.5, 14.5) """ return moments_central(image, (0,) * image.ndim, order=order) def moments_central(image, center=None, order=3, **kwargs): """Calculate all central image moments up to a certain order. The center coordinates (cr, cc) can be calculated from the raw moments as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}. Note that central moments are translation invariant but not scale and rotation invariant. Parameters ---------- image : nD double or uint8 array Rasterized shape as image. center : tuple of float, optional Coordinates of the image centroid. This will be computed if it is not provided. order : int, optional The maximum order of moments computed. Returns ------- mu : (``order + 1``, ``order + 1``) array Central image moments. References ---------- .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing: Core Algorithms. Springer-Verlag, London, 2009. .. [2] B. Jähne. Digital Image Processing. Springer-Verlag, Berlin-Heidelberg, 6. edition, 2005. .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features, from Lecture notes in computer science, p. 676. Springer, Berlin, 1993. .. [4] https://en.wikipedia.org/wiki/Image_moment Examples -------- >>> image = np.zeros((20, 20), dtype=np.double) >>> image[13:17, 13:17] = 1 >>> M = moments(image) >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0]) >>> moments_central(image, centroid) array([[16., 0., 20., 0.], [ 0., 0., 0., 0.], [20., 0., 25., 0.], [ 0., 0., 0., 0.]]) """ if center is None: center = centroid(image) float_dtype = _supported_float_type(image.dtype) calc = image.astype(float_dtype, copy=False) for dim, dim_length in enumerate(image.shape): delta = np.arange(dim_length, dtype=float_dtype) - center[dim] powers_of_delta = ( delta[:, np.newaxis] ** np.arange(order + 1, dtype=float_dtype) ) calc = np.rollaxis(calc, dim, image.ndim) calc = np.dot(calc, powers_of_delta) calc = np.rollaxis(calc, -1, dim) return calc def moments_normalized(mu, order=3): """Calculate all normalized central image moments up to a certain order. Note that normalized central moments are translation and scale invariant but not rotation invariant. Parameters ---------- mu : (M,[ ...,] M) array Central image moments, where M must be greater than or equal to ``order``. order : int, optional Maximum order of moments. Default is 3. Returns ------- nu : (``order + 1``,[ ...,] ``order + 1``) array Normalized central image moments. References ---------- .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing: Core Algorithms. Springer-Verlag, London, 2009. .. [2] B. Jähne. Digital Image Processing. Springer-Verlag, Berlin-Heidelberg, 6. edition, 2005. .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features, from Lecture notes in computer science, p. 676. Springer, Berlin, 1993. .. [4] https://en.wikipedia.org/wiki/Image_moment Examples -------- >>> image = np.zeros((20, 20), dtype=np.double) >>> image[13:17, 13:17] = 1 >>> m = moments(image) >>> centroid = (m[0, 1] / m[0, 0], m[1, 0] / m[0, 0]) >>> mu = moments_central(image, centroid) >>> moments_normalized(mu) array([[ nan, nan, 0.078125 , 0. ], [ nan, 0. , 0. , 0. ], [0.078125 , 0. , 0.00610352, 0. ], [0. , 0. , 0. , 0. ]]) """ if np.any(np.array(mu.shape) <= order): raise ValueError("Shape of image moments must be >= `order`") nu = np.zeros_like(mu) mu0 = mu.ravel()[0] for powers in itertools.product(range(order + 1), repeat=mu.ndim): if sum(powers) < 2: nu[powers] = np.nan else: nu[powers] = mu[powers] / (mu0 ** (sum(powers) / nu.ndim + 1)) return nu def moments_hu(nu): """Calculate Hu's set of image moments (2D-only). Note that this set of moments is proofed to be translation, scale and rotation invariant. Parameters ---------- nu : (M, M) array Normalized central image moments, where M must be >= 4. Returns ------- nu : (7,) array Hu's set of image moments. References ---------- .. [1] M. K. Hu, "Visual Pattern Recognition by Moment Invariants", IRE Trans. Info. Theory, vol. IT-8, pp. 179-187, 1962 .. [2] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing: Core Algorithms. Springer-Verlag, London, 2009. .. [3] B. Jähne. Digital Image Processing. Springer-Verlag, Berlin-Heidelberg, 6. edition, 2005. .. [4] T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features, from Lecture notes in computer science, p. 676. Springer, Berlin, 1993. .. [5] https://en.wikipedia.org/wiki/Image_moment Examples -------- >>> image = np.zeros((20, 20), dtype=np.double) >>> image[13:17, 13:17] = 0.5 >>> image[10:12, 10:12] = 1 >>> mu = moments_central(image) >>> nu = moments_normalized(mu) >>> moments_hu(nu) array([7.45370370e-01, 3.51165981e-01, 1.04049179e-01, 4.06442107e-02, 2.64312299e-03, 2.40854582e-02, 4.33680869e-19]) """ dtype = np.float32 if nu.dtype == 'float32' else np.float64 return _moments_cy.moments_hu(nu.astype(dtype, copy=False)) def centroid(image): """Return the (weighted) centroid of an image. Parameters ---------- image : array The input image. Returns ------- center : tuple of float, length ``image.ndim`` The centroid of the (nonzero) pixels in ``image``. Examples -------- >>> image = np.zeros((20, 20), dtype=np.double) >>> image[13:17, 13:17] = 0.5 >>> image[10:12, 10:12] = 1 >>> centroid(image) array([13.16666667, 13.16666667]) """ M = moments_central(image, center=(0,) * image.ndim, order=1) center = (M[tuple(np.eye(image.ndim, dtype=int))] # array of weighted sums # for each axis / M[(0,) * image.ndim]) # weighted sum of all points return center def inertia_tensor(image, mu=None): """Compute the inertia tensor of the input image. Parameters ---------- image : array The input image. mu : array, optional The pre-computed central moments of ``image``. The inertia tensor computation requires the central moments of the image. If an application requires both the central moments and the inertia tensor (for example, `skimage.measure.regionprops`), then it is more efficient to pre-compute them and pass them to the inertia tensor call. Returns ------- T : array, shape ``(image.ndim, image.ndim)`` The inertia tensor of the input image. :math:`T_{i, j}` contains the covariance of image intensity along axes :math:`i` and :math:`j`. References ---------- .. [1] https://en.wikipedia.org/wiki/Moment_of_inertia#Inertia_tensor .. [2] Bernd Jähne. Spatio-Temporal Image Processing: Theory and Scientific Applications. (Chapter 8: Tensor Methods) Springer, 1993. """ if mu is None: mu = moments_central(image, order=2) # don't need higher-order moments mu0 = mu[(0,) * image.ndim] result = np.zeros((image.ndim, image.ndim), dtype=mu.dtype) # nD expression to get coordinates ([2, 0], [0, 2]) (2D), # ([2, 0, 0], [0, 2, 0], [0, 0, 2]) (3D), etc. corners2 = tuple(2 * np.eye(image.ndim, dtype=int)) d = np.diag(result) d.flags.writeable = True # See https://ocw.mit.edu/courses/aeronautics-and-astronautics/ # 16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec26.pdf # Iii is the sum of second-order moments of every axis *except* i, not the # second order moment of axis i. # See also https://github.com/scikit-image/scikit-image/issues/3229 d[:] = (np.sum(mu[corners2]) - mu[corners2]) / mu0 for dims in itertools.combinations(range(image.ndim), 2): mu_index = np.zeros(image.ndim, dtype=int) mu_index[list(dims)] = 1 result[dims] = -mu[tuple(mu_index)] / mu0 result.T[dims] = -mu[tuple(mu_index)] / mu0 return result def inertia_tensor_eigvals(image, mu=None, T=None): """Compute the eigenvalues of the inertia tensor of the image. The inertia tensor measures covariance of the image intensity along the image axes. (See `inertia_tensor`.) The relative magnitude of the eigenvalues of the tensor is thus a measure of the elongation of a (bright) object in the image. Parameters ---------- image : array The input image. mu : array, optional The pre-computed central moments of ``image``. T : array, shape ``(image.ndim, image.ndim)`` The pre-computed inertia tensor. If ``T`` is given, ``mu`` and ``image`` are ignored. Returns ------- eigvals : list of float, length ``image.ndim`` The eigenvalues of the inertia tensor of ``image``, in descending order. Notes ----- Computing the eigenvalues requires the inertia tensor of the input image. This is much faster if the central moments (``mu``) are provided, or, alternatively, one can provide the inertia tensor (``T``) directly. """ if T is None: T = inertia_tensor(image, mu) eigvals = np.linalg.eigvalsh(T) # Floating point precision problems could make a positive # semidefinite matrix have an eigenvalue that is very slightly # negative. This can cause problems down the line, so set values # very near zero to zero. eigvals = np.clip(eigvals, 0, None, out=eigvals) return sorted(eigvals, reverse=True)