import inspect from functools import wraps from math import atan2 from math import pi as PI from math import sqrt from warnings import warn import numpy as np from scipy import ndimage as ndi from scipy.spatial.distance import pdist from . import _moments from ._find_contours import find_contours from ._marching_cubes_lewiner import marching_cubes from ._regionprops_utils import euler_number, perimeter, perimeter_crofton __all__ = ['regionprops', 'euler_number', 'perimeter', 'perimeter_crofton'] # All values in this PROPS dict correspond to current scikit-image property # names. The keys in this PROPS dict correspond to older names used in prior # releases. For backwards compatibility, these older names will continue to # work, but will not be documented. PROPS = { 'Area': 'area', 'BoundingBox': 'bbox', 'BoundingBoxArea': 'area_bbox', 'bbox_area': 'area_bbox', 'CentralMoments': 'moments_central', 'Centroid': 'centroid', 'ConvexArea': 'area_convex', 'convex_area': 'area_convex', # 'ConvexHull', 'ConvexImage': 'image_convex', 'convex_image': 'image_convex', 'Coordinates': 'coords', 'Eccentricity': 'eccentricity', 'EquivDiameter': 'equivalent_diameter_area', 'equivalent_diameter': 'equivalent_diameter_area', 'EulerNumber': 'euler_number', 'Extent': 'extent', # 'Extrema', 'FeretDiameter': 'feret_diameter_max', 'FeretDiameterMax': 'feret_diameter_max', 'FilledArea': 'area_filled', 'filled_area': 'area_filled', 'FilledImage': 'image_filled', 'filled_image': 'image_filled', 'HuMoments': 'moments_hu', 'Image': 'image', 'InertiaTensor': 'inertia_tensor', 'InertiaTensorEigvals': 'inertia_tensor_eigvals', 'IntensityImage': 'image_intensity', 'intensity_image': 'image_intensity', 'Label': 'label', 'LocalCentroid': 'centroid_local', 'local_centroid': 'centroid_local', 'MajorAxisLength': 'axis_major_length', 'major_axis_length': 'axis_major_length', 'MaxIntensity': 'intensity_max', 'max_intensity': 'intensity_max', 'MeanIntensity': 'intensity_mean', 'mean_intensity': 'intensity_mean', 'MinIntensity': 'intensity_min', 'min_intensity': 'intensity_min', 'MinorAxisLength': 'axis_minor_length', 'minor_axis_length': 'axis_minor_length', 'Moments': 'moments', 'NormalizedMoments': 'moments_normalized', 'Orientation': 'orientation', 'Perimeter': 'perimeter', 'CroftonPerimeter': 'perimeter_crofton', # 'PixelIdxList', # 'PixelList', 'Slice': 'slice', 'Solidity': 'solidity', # 'SubarrayIdx' 'WeightedCentralMoments': 'moments_weighted_central', 'weighted_moments_central': 'moments_weighted_central', 'WeightedCentroid': 'centroid_weighted', 'weighted_centroid': 'centroid_weighted', 'WeightedHuMoments': 'moments_weighted_hu', 'weighted_moments_hu': 'moments_weighted_hu', 'WeightedLocalCentroid': 'centroid_weighted_local', 'weighted_local_centroid': 'centroid_weighted_local', 'WeightedMoments': 'moments_weighted', 'weighted_moments': 'moments_weighted', 'WeightedNormalizedMoments': 'moments_weighted_normalized', 'weighted_moments_normalized': 'moments_weighted_normalized', } OBJECT_COLUMNS = { 'image', 'coords', 'image_convex', 'slice', 'image_filled', 'image_intensity' } COL_DTYPES = { 'area': int, 'area_bbox': int, 'area_convex': int, 'area_filled': int, 'axis_major_length': float, 'axis_minor_length': float, 'bbox': int, 'centroid': float, 'centroid_local': float, 'centroid_weighted': float, 'centroid_weighted_local': float, 'coords': object, 'eccentricity': float, 'equivalent_diameter_area': float, 'euler_number': int, 'extent': float, 'feret_diameter_max': float, 'image': object, 'image_convex': object, 'image_filled': object, 'image_intensity': object, 'inertia_tensor': float, 'inertia_tensor_eigvals': float, 'intensity_max': float, 'intensity_mean': float, 'intensity_min': float, 'label': int, 'moments': float, 'moments_central': float, 'moments_hu': float, 'moments_normalized': float, 'moments_weighted': float, 'moments_weighted_central': float, 'moments_weighted_hu': float, 'moments_weighted_normalized': float, 'orientation': float, 'perimeter': float, 'perimeter_crofton': float, 'slice': object, 'solidity': float, } PROP_VALS = set(PROPS.values()) def _infer_number_of_required_args(func): """Infer the number of required arguments for a function Parameters ---------- func : callable The function that is being inspected. Returns ------- n_args : int The number of required arguments of func. """ argspec = inspect.getfullargspec(func) n_args = len(argspec.args) if argspec.defaults is not None: n_args -= len(argspec.defaults) return n_args def _infer_regionprop_dtype(func, *, intensity, ndim): """Infer the dtype of a region property calculated by func. If a region property function always returns the same shape and type of output regardless of input size, then the dtype is the dtype of the returned array. Otherwise, the property has object dtype. Parameters ---------- func : callable Function to be tested. The signature should be array[bool] -> Any if intensity is False, or *(array[bool], array[float]) -> Any otherwise. intensity : bool Whether the regionprop is calculated on an intensity image. ndim : int The number of dimensions for which to check func. Returns ------- dtype : NumPy data type The data type of the returned property. """ labels = [1, 2] sample = np.zeros((3,) * ndim, dtype=np.intp) sample[(0,) * ndim] = labels[0] sample[(slice(1, None),) * ndim] = labels[1] propmasks = [(sample == n) for n in labels] rng = np.random.default_rng() if intensity and _infer_number_of_required_args(func) == 2: def _func(mask): return func(mask, rng.random(sample.shape)) else: _func = func props1, props2 = map(_func, propmasks) if (np.isscalar(props1) and np.isscalar(props2) or np.array(props1).shape == np.array(props2).shape): dtype = np.array(props1).dtype.type else: dtype = np.object_ return dtype def _cached(f): @wraps(f) def wrapper(obj): cache = obj._cache prop = f.__name__ if not ((prop in cache) and obj._cache_active): cache[prop] = f(obj) return cache[prop] return wrapper def only2d(method): @wraps(method) def func2d(self, *args, **kwargs): if self._ndim > 2: raise NotImplementedError('Property %s is not implemented for ' '3D images' % method.__name__) return method(self, *args, **kwargs) return func2d def _inertia_eigvals_to_axes_lengths_3D(inertia_tensor_eigvals): """Compute ellipsoid axis lengths from inertia tensor eigenvalues. Paramters --------- inertia_tensor_eigvals : seqeunce of float A sequence of 3 floating point eigenvalues, sorted in descending order. Returns ------- axis_lengths : list of float The ellipsoid axis lengths sorted in descending order. Notes ----- Let a >= b >= c be the ellipsoid semi-axes and s1 >= s2 >= s3 be the inertia tensor eigenvalues. The inertia tensor eigenvalues are given for a solid ellipsoid in [1]_. s1 = 1 / 5 * (a**2 + b**2) s2 = 1 / 5 * (a**2 + c**2) s3 = 1 / 5 * (b**2 + c**2) Rearranging to solve for a, b, c in terms of s1, s2, s3 gives a = math.sqrt(5 / 2 * ( s1 + s2 - s3)) b = math.sqrt(5 / 2 * ( s1 - s2 + s3)) c = math.sqrt(5 / 2 * (-s1 + s2 + s3)) We can then simply replace sqrt(5/2) by sqrt(10) to get the full axes lengths rather than the semi-axes lengths. References ---------- ..[1] https://en.wikipedia.org/wiki/List_of_moments_of_inertia#List_of_3D_inertia_tensors # noqa """ axis_lengths = [] for ax in range(2, -1, -1): w = sum(v * -1 if i == ax else v for i, v in enumerate(inertia_tensor_eigvals)) axis_lengths.append(sqrt(10 * w)) return axis_lengths class RegionProperties: """Please refer to `skimage.measure.regionprops` for more information on the available region properties. """ def __init__(self, slice, label, label_image, intensity_image, cache_active, *, extra_properties=None): if intensity_image is not None: ndim = label_image.ndim if not ( intensity_image.shape[:ndim] == label_image.shape and intensity_image.ndim in [ndim, ndim + 1] ): raise ValueError('Label and intensity image shapes must match,' ' except for channel (last) axis.') multichannel = label_image.shape < intensity_image.shape else: multichannel = False self.label = label self._slice = slice self.slice = slice self._label_image = label_image self._intensity_image = intensity_image self._cache_active = cache_active self._cache = {} self._ndim = label_image.ndim self._multichannel = multichannel self._spatial_axes = tuple(range(self._ndim)) self._extra_properties = {} if extra_properties is not None: for func in extra_properties: name = func.__name__ if hasattr(self, name): msg = ( f"Extra property '{name}' is shadowed by existing " f"property and will be inaccessible. Consider " f"renaming it." ) warn(msg) self._extra_properties = { func.__name__: func for func in extra_properties } def __getattr__(self, attr): if attr in self._extra_properties: func = self._extra_properties[attr] n_args = _infer_number_of_required_args(func) # determine whether func requires intensity image if n_args == 2: if self._intensity_image is not None: if self._multichannel: multichannel_list = [func(self.image, self.image_intensity[..., i]) for i in range( self.image_intensity.shape[-1])] return np.stack(multichannel_list, axis=-1) else: return func(self.image, self.image_intensity) else: raise AttributeError( f'intensity image required to calculate {attr}' ) elif n_args == 1: return func(self.image) else: raise AttributeError( f'Custom regionprop function\'s number of arguments must ' f'be 1 or 2, but {attr} takes {n_args} arguments.' ) elif attr in PROPS and attr.lower() == attr: # retrieve deprecated property (excluding old CamelCase ones) return getattr(self, PROPS[attr]) else: raise AttributeError( f"'{type(self)}' object has no attribute '{attr}'" ) def __setattr__(self, name, value): if name in PROPS: super().__setattr__(PROPS[name], value) else: super().__setattr__(name, value) @property @_cached def area(self): return np.sum(self.image) @property def bbox(self): """ Returns ------- A tuple of the bounding box's start coordinates for each dimension, followed by the end coordinates for each dimension """ return tuple([self.slice[i].start for i in range(self._ndim)] + [self.slice[i].stop for i in range(self._ndim)]) @property def area_bbox(self): return self.image.size @property def centroid(self): return tuple(self.coords.mean(axis=0)) @property @_cached def area_convex(self): return np.sum(self.image_convex) @property @_cached def image_convex(self): from ..morphology.convex_hull import convex_hull_image return convex_hull_image(self.image) @property def coords(self): indices = np.nonzero(self.image) return np.vstack([indices[i] + self.slice[i].start for i in range(self._ndim)]).T @property @only2d def eccentricity(self): l1, l2 = self.inertia_tensor_eigvals if l1 == 0: return 0 return sqrt(1 - l2 / l1) @property def equivalent_diameter_area(self): return (2 * self._ndim * self.area / PI) ** (1 / self._ndim) @property def euler_number(self): if self._ndim not in [2, 3]: raise NotImplementedError('Euler number is implemented for ' '2D or 3D images only') return euler_number(self.image, self._ndim) @property def extent(self): return self.area / self.image.size @property def feret_diameter_max(self): identity_convex_hull = np.pad(self.image_convex, 2, mode='constant', constant_values=0) if self._ndim == 2: coordinates = np.vstack(find_contours(identity_convex_hull, .5, fully_connected='high')) elif self._ndim == 3: coordinates, _, _, _ = marching_cubes(identity_convex_hull, level=.5) distances = pdist(coordinates, 'sqeuclidean') return sqrt(np.max(distances)) @property def area_filled(self): return np.sum(self.image_filled) @property @_cached def image_filled(self): structure = np.ones((3,) * self._ndim) return ndi.binary_fill_holes(self.image, structure) @property @_cached def image(self): return self._label_image[self.slice] == self.label @property @_cached def inertia_tensor(self): mu = self.moments_central return _moments.inertia_tensor(self.image, mu) @property @_cached def inertia_tensor_eigvals(self): return _moments.inertia_tensor_eigvals(self.image, T=self.inertia_tensor) @property @_cached def image_intensity(self): if self._intensity_image is None: raise AttributeError('No intensity image specified.') image = ( self.image if not self._multichannel else np.expand_dims(self.image, self._ndim) ) return self._intensity_image[self.slice] * image def _image_intensity_double(self): return self.image_intensity.astype(np.double, copy=False) @property def centroid_local(self): M = self.moments M0 = M[(0,) * self._ndim] def _get_element(axis): return (0,) * axis + (1,) + (0,) * (self._ndim - 1 - axis) return np.asarray( tuple(M[_get_element(axis)] / M0 for axis in range(self._ndim))) @property def intensity_max(self): vals = self.image_intensity[self.image] return np.max(vals, axis=0).astype(np.double, copy=False) @property def intensity_mean(self): return np.mean(self.image_intensity[self.image], axis=0) @property def intensity_min(self): vals = self.image_intensity[self.image] return np.min(vals, axis=0).astype(np.double, copy=False) @property def axis_major_length(self): if self._ndim == 2: l1 = self.inertia_tensor_eigvals[0] return 4 * sqrt(l1) elif self._ndim == 3: # equivalent to _inertia_eigvals_to_axes_lengths_3D(ev)[0] ev = self.inertia_tensor_eigvals return sqrt(10 * (ev[0] + ev[1] - ev[2])) else: raise ValueError("axis_major_length only available in 2D and 3D") @property def axis_minor_length(self): if self._ndim == 2: l2 = self.inertia_tensor_eigvals[-1] return 4 * sqrt(l2) elif self._ndim == 3: # equivalent to _inertia_eigvals_to_axes_lengths_3D(ev)[-1] ev = self.inertia_tensor_eigvals return sqrt(10 * (-ev[0] + ev[1] + ev[2])) else: raise ValueError("axis_minor_length only available in 2D and 3D") @property @_cached def moments(self): M = _moments.moments(self.image.astype(np.uint8), 3) return M @property @_cached def moments_central(self): mu = _moments.moments_central(self.image.astype(np.uint8), self.centroid_local, order=3) return mu @property @only2d def moments_hu(self): return _moments.moments_hu(self.moments_normalized) @property @_cached def moments_normalized(self): return _moments.moments_normalized(self.moments_central, 3) @property @only2d def orientation(self): a, b, b, c = self.inertia_tensor.flat if a - c == 0: if b < 0: return -PI / 4. else: return PI / 4. else: return 0.5 * atan2(-2 * b, c - a) @property @only2d def perimeter(self): return perimeter(self.image, 4) @property @only2d def perimeter_crofton(self): return perimeter_crofton(self.image, 4) @property def solidity(self): return self.area / self.area_convex @property def centroid_weighted(self): ctr = self.centroid_weighted_local return tuple(idx + slc.start for idx, slc in zip(ctr, self.slice)) @property def centroid_weighted_local(self): M = self.moments_weighted M0 = M[(0,) * self._ndim] def _get_element(axis): return (0,) * axis + (1,) + (0,) * (self._ndim - 1 - axis) return np.asarray( tuple(M[_get_element(axis)] / M0 for axis in range(self._ndim))) @property @_cached def moments_weighted(self): image = self._image_intensity_double() if self._multichannel: moments = np.stack( [_moments.moments(image[..., i], order=3) for i in range(image.shape[-1])], axis=-1, ) else: moments = _moments.moments(image, order=3) return moments @property @_cached def moments_weighted_central(self): ctr = self.centroid_weighted_local image = self._image_intensity_double() if self._multichannel: moments_list = [ _moments.moments_central( image[..., i], center=ctr[..., i], order=3 ) for i in range(image.shape[-1]) ] moments = np.stack(moments_list, axis=-1) else: moments = _moments.moments_central(image, ctr, order=3) return moments @property @only2d def moments_weighted_hu(self): nu = self.moments_weighted_normalized if self._multichannel: nchannels = self._intensity_image.shape[-1] return np.stack( [_moments.moments_hu(nu[..., i]) for i in range(nchannels)], axis=-1, ) else: return _moments.moments_hu(nu) @property @_cached def moments_weighted_normalized(self): mu = self.moments_weighted_central if self._multichannel: nchannels = self._intensity_image.shape[-1] return np.stack( [_moments.moments_normalized(mu[..., i], order=3) for i in range(nchannels)], axis=-1, ) else: return _moments.moments_normalized(mu, order=3) return _moments.moments_normalized(self.moments_weighted_central, 3) def __iter__(self): props = PROP_VALS if self._intensity_image is None: unavailable_props = ('image_intensity', 'intensity_max', 'intensity_mean', 'intensity_min', 'moments_weighted', 'moments_weighted_central', 'centroid_weighted', 'centroid_weighted_local', 'moments_weighted_hu', 'moments_weighted_normalized') props = props.difference(unavailable_props) return iter(sorted(props)) def __getitem__(self, key): value = getattr(self, key, None) if value is not None: return value else: # backwards compatibility return getattr(self, PROPS[key]) def __eq__(self, other): if not isinstance(other, RegionProperties): return False for key in PROP_VALS: try: # so that NaNs are equal np.testing.assert_equal(getattr(self, key, None), getattr(other, key, None)) except AssertionError: return False return True # For compatibility with code written prior to 0.16 _RegionProperties = RegionProperties def _props_to_dict(regions, properties=('label', 'bbox'), separator='-'): """Convert image region properties list into a column dictionary. Parameters ---------- regions : (N,) list List of RegionProperties objects as returned by :func:`regionprops`. properties : tuple or list of str, optional Properties that will be included in the resulting dictionary For a list of available properties, please see :func:`regionprops`. Users should remember to add "label" to keep track of region identities. separator : str, optional For non-scalar properties not listed in OBJECT_COLUMNS, each element will appear in its own column, with the index of that element separated from the property name by this separator. For example, the inertia tensor of a 2D region will appear in four columns: ``inertia_tensor-0-0``, ``inertia_tensor-0-1``, ``inertia_tensor-1-0``, and ``inertia_tensor-1-1`` (where the separator is ``-``). Object columns are those that cannot be split in this way because the number of columns would change depending on the object. For example, ``image`` and ``coords``. Returns ------- out_dict : dict Dictionary mapping property names to an array of values of that property, one value per region. This dictionary can be used as input to pandas ``DataFrame`` to map property names to columns in the frame and regions to rows. Notes ----- Each column contains either a scalar property, an object property, or an element in a multidimensional array. Properties with scalar values for each region, such as "eccentricity", will appear as a float or int array with that property name as key. Multidimensional properties *of fixed size* for a given image dimension, such as "centroid" (every centroid will have three elements in a 3D image, no matter the region size), will be split into that many columns, with the name {property_name}{separator}{element_num} (for 1D properties), {property_name}{separator}{elem_num0}{separator}{elem_num1} (for 2D properties), and so on. For multidimensional properties that don't have a fixed size, such as "image" (the image of a region varies in size depending on the region size), an object array will be used, with the corresponding property name as the key. Examples -------- >>> from skimage import data, util, measure >>> image = data.coins() >>> label_image = measure.label(image > 110, connectivity=image.ndim) >>> proplist = regionprops(label_image, image) >>> props = _props_to_dict(proplist, properties=['label', 'inertia_tensor', ... 'inertia_tensor_eigvals']) >>> props # doctest: +ELLIPSIS +SKIP {'label': array([ 1, 2, ...]), ... 'inertia_tensor-0-0': array([ 4.012...e+03, 8.51..., ...]), ... ..., 'inertia_tensor_eigvals-1': array([ 2.67...e+02, 2.83..., ...])} The resulting dictionary can be directly passed to pandas, if installed, to obtain a clean DataFrame: >>> import pandas as pd # doctest: +SKIP >>> data = pd.DataFrame(props) # doctest: +SKIP >>> data.head() # doctest: +SKIP label inertia_tensor-0-0 ... inertia_tensor_eigvals-1 0 1 4012.909888 ... 267.065503 1 2 8.514739 ... 2.834806 2 3 0.666667 ... 0.000000 3 4 0.000000 ... 0.000000 4 5 0.222222 ... 0.111111 """ out = {} n = len(regions) for prop in properties: r = regions[0] # Copy the original property name so the output will have the # user-provided property name in the case of deprecated names. orig_prop = prop # determine the current property name for any deprecated property. prop = PROPS.get(prop, prop) rp = getattr(r, prop) if prop in COL_DTYPES: dtype = COL_DTYPES[prop] else: func = r._extra_properties[prop] dtype = _infer_regionprop_dtype( func, intensity=r._intensity_image is not None, ndim=r.image.ndim, ) # scalars and objects are dedicated one column per prop # array properties are raveled into multiple columns # for more info, refer to notes 1 if np.isscalar(rp) or prop in OBJECT_COLUMNS or dtype is np.object_: column_buffer = np.empty(n, dtype=dtype) for i in range(n): column_buffer[i] = regions[i][prop] out[orig_prop] = np.copy(column_buffer) else: if isinstance(rp, np.ndarray): shape = rp.shape else: shape = (len(rp),) # precompute property column names and locations modified_props = [] locs = [] for ind in np.ndindex(shape): modified_props.append( separator.join(map(str, (orig_prop,) + ind)) ) locs.append(ind if len(ind) > 1 else ind[0]) # fill temporary column data_array n_columns = len(locs) column_data = np.empty((n, n_columns), dtype=dtype) for k in range(n): rp = regions[k][prop] for i, loc in enumerate(locs): column_data[k, i] = rp[loc] # add the columns to the output dictionary for i, modified_prop in enumerate(modified_props): out[modified_prop] = column_data[:, i] return out def regionprops_table(label_image, intensity_image=None, properties=('label', 'bbox'), *, cache=True, separator='-', extra_properties=None): """Compute image properties and return them as a pandas-compatible table. The table is a dictionary mapping column names to value arrays. See Notes section below for details. .. versionadded:: 0.16 Parameters ---------- label_image : (N, M[, P]) ndarray Labeled input image. Labels with value 0 are ignored. intensity_image : (M, N[, P][, C]) ndarray, optional Intensity (i.e., input) image with same size as labeled image, plus optionally an extra dimension for multichannel data. Currently, this extra channel dimension, if present, must be the last axis. Default is None. .. versionchanged:: 0.18.0 The ability to provide an extra dimension for channels was added. properties : tuple or list of str, optional Properties that will be included in the resulting dictionary For a list of available properties, please see :func:`regionprops`. Users should remember to add "label" to keep track of region identities. cache : bool, optional Determine whether to cache calculated properties. The computation is much faster for cached properties, whereas the memory consumption increases. separator : str, optional For non-scalar properties not listed in OBJECT_COLUMNS, each element will appear in its own column, with the index of that element separated from the property name by this separator. For example, the inertia tensor of a 2D region will appear in four columns: ``inertia_tensor-0-0``, ``inertia_tensor-0-1``, ``inertia_tensor-1-0``, and ``inertia_tensor-1-1`` (where the separator is ``-``). Object columns are those that cannot be split in this way because the number of columns would change depending on the object. For example, ``image`` and ``coords``. extra_properties : Iterable of callables Add extra property computation functions that are not included with skimage. The name of the property is derived from the function name, the dtype is inferred by calling the function on a small sample. If the name of an extra property clashes with the name of an existing property the extra property wil not be visible and a UserWarning is issued. A property computation function must take a region mask as its first argument. If the property requires an intensity image, it must accept the intensity image as the second argument. Returns ------- out_dict : dict Dictionary mapping property names to an array of values of that property, one value per region. This dictionary can be used as input to pandas ``DataFrame`` to map property names to columns in the frame and regions to rows. If the image has no regions, the arrays will have length 0, but the correct type. Notes ----- Each column contains either a scalar property, an object property, or an element in a multidimensional array. Properties with scalar values for each region, such as "eccentricity", will appear as a float or int array with that property name as key. Multidimensional properties *of fixed size* for a given image dimension, such as "centroid" (every centroid will have three elements in a 3D image, no matter the region size), will be split into that many columns, with the name {property_name}{separator}{element_num} (for 1D properties), {property_name}{separator}{elem_num0}{separator}{elem_num1} (for 2D properties), and so on. For multidimensional properties that don't have a fixed size, such as "image" (the image of a region varies in size depending on the region size), an object array will be used, with the corresponding property name as the key. Examples -------- >>> from skimage import data, util, measure >>> image = data.coins() >>> label_image = measure.label(image > 110, connectivity=image.ndim) >>> props = measure.regionprops_table(label_image, image, ... properties=['label', 'inertia_tensor', ... 'inertia_tensor_eigvals']) >>> props # doctest: +ELLIPSIS +SKIP {'label': array([ 1, 2, ...]), ... 'inertia_tensor-0-0': array([ 4.012...e+03, 8.51..., ...]), ... ..., 'inertia_tensor_eigvals-1': array([ 2.67...e+02, 2.83..., ...])} The resulting dictionary can be directly passed to pandas, if installed, to obtain a clean DataFrame: >>> import pandas as pd # doctest: +SKIP >>> data = pd.DataFrame(props) # doctest: +SKIP >>> data.head() # doctest: +SKIP label inertia_tensor-0-0 ... inertia_tensor_eigvals-1 0 1 4012.909888 ... 267.065503 1 2 8.514739 ... 2.834806 2 3 0.666667 ... 0.000000 3 4 0.000000 ... 0.000000 4 5 0.222222 ... 0.111111 [5 rows x 7 columns] If we want to measure a feature that does not come as a built-in property, we can define custom functions and pass them as ``extra_properties``. For example, we can create a custom function that measures the intensity quartiles in a region: >>> from skimage import data, util, measure >>> import numpy as np >>> def quartiles(regionmask, intensity): ... return np.percentile(intensity[regionmask], q=(25, 50, 75)) >>> >>> image = data.coins() >>> label_image = measure.label(image > 110, connectivity=image.ndim) >>> props = measure.regionprops_table(label_image, intensity_image=image, ... properties=('label',), ... extra_properties=(quartiles,)) >>> import pandas as pd # doctest: +SKIP >>> pd.DataFrame(props).head() # doctest: +SKIP label quartiles-0 quartiles-1 quartiles-2 0 1 117.00 123.0 130.0 1 2 111.25 112.0 114.0 2 3 111.00 111.0 111.0 3 4 111.00 111.5 112.5 4 5 112.50 113.0 114.0 """ regions = regionprops(label_image, intensity_image=intensity_image, cache=cache, extra_properties=extra_properties) if extra_properties is not None: properties = ( list(properties) + [prop.__name__ for prop in extra_properties] ) if len(regions) == 0: ndim = label_image.ndim label_image = np.zeros((3,) * ndim, dtype=int) label_image[(1,) * ndim] = 1 if intensity_image is not None: intensity_image = np.zeros( label_image.shape + intensity_image.shape[ndim:], dtype=intensity_image.dtype ) regions = regionprops(label_image, intensity_image=intensity_image, cache=cache, extra_properties=extra_properties) out_d = _props_to_dict(regions, properties=properties, separator=separator) return {k: v[:0] for k, v in out_d.items()} return _props_to_dict( regions, properties=properties, separator=separator ) def regionprops(label_image, intensity_image=None, cache=True, coordinates=None, *, extra_properties=None): r"""Measure properties of labeled image regions. Parameters ---------- label_image : (M, N[, P]) ndarray Labeled input image. Labels with value 0 are ignored. .. versionchanged:: 0.14.1 Previously, ``label_image`` was processed by ``numpy.squeeze`` and so any number of singleton dimensions was allowed. This resulted in inconsistent handling of images with singleton dimensions. To recover the old behaviour, use ``regionprops(np.squeeze(label_image), ...)``. intensity_image : (M, N[, P][, C]) ndarray, optional Intensity (i.e., input) image with same size as labeled image, plus optionally an extra dimension for multichannel data. Currently, this extra channel dimension, if present, must be the last axis. Default is None. .. versionchanged:: 0.18.0 The ability to provide an extra dimension for channels was added. cache : bool, optional Determine whether to cache calculated properties. The computation is much faster for cached properties, whereas the memory consumption increases. coordinates : DEPRECATED This argument is deprecated and will be removed in a future version of scikit-image. See :ref:`Coordinate conventions ` for more details. .. deprecated:: 0.16.0 Use "rc" coordinates everywhere. It may be sufficient to call ``numpy.transpose`` on your label image to get the same values as 0.15 and earlier. However, for some properties, the transformation will be less trivial. For example, the new orientation is :math:`\frac{\pi}{2}` plus the old orientation. extra_properties : Iterable of callables Add extra property computation functions that are not included with skimage. The name of the property is derived from the function name, the dtype is inferred by calling the function on a small sample. If the name of an extra property clashes with the name of an existing property the extra property wil not be visible and a UserWarning is issued. A property computation function must take a region mask as its first argument. If the property requires an intensity image, it must accept the intensity image as the second argument. Returns ------- properties : list of RegionProperties Each item describes one labeled region, and can be accessed using the attributes listed below. Notes ----- The following properties can be accessed as attributes or keys: **area** : int Number of pixels of the region. **area_bbox** : int Number of pixels of bounding box. **area_convex** : int Number of pixels of convex hull image, which is the smallest convex polygon that encloses the region. **area_filled** : int Number of pixels of the region will all the holes filled in. Describes the area of the image_filled. **axis_major_length** : float The length of the major axis of the ellipse that has the same normalized second central moments as the region. **axis_minor_length** : float The length of the minor axis of the ellipse that has the same normalized second central moments as the region. **bbox** : tuple Bounding box ``(min_row, min_col, max_row, max_col)``. Pixels belonging to the bounding box are in the half-open interval ``[min_row; max_row)`` and ``[min_col; max_col)``. **centroid** : array Centroid coordinate tuple ``(row, col)``. **centroid_local** : array Centroid coordinate tuple ``(row, col)``, relative to region bounding box. **centroid_weighted** : array Centroid coordinate tuple ``(row, col)`` weighted with intensity image. **centroid_weighted_local** : array Centroid coordinate tuple ``(row, col)``, relative to region bounding box, weighted with intensity image. **coords** : (N, 2) ndarray Coordinate list ``(row, col)`` of the region. **eccentricity** : float Eccentricity of the ellipse that has the same second-moments as the region. The eccentricity is the ratio of the focal distance (distance between focal points) over the major axis length. The value is in the interval [0, 1). When it is 0, the ellipse becomes a circle. **equivalent_diameter_area** : float The diameter of a circle with the same area as the region. **euler_number** : int Euler characteristic of the set of non-zero pixels. Computed as number of connected components subtracted by number of holes (input.ndim connectivity). In 3D, number of connected components plus number of holes subtracted by number of tunnels. **extent** : float Ratio of pixels in the region to pixels in the total bounding box. Computed as ``area / (rows * cols)`` **feret_diameter_max** : float Maximum Feret's diameter computed as the longest distance between points around a region's convex hull contour as determined by ``find_contours``. [5]_ **image** : (H, J) ndarray Sliced binary region image which has the same size as bounding box. **image_convex** : (H, J) ndarray Binary convex hull image which has the same size as bounding box. **image_filled** : (H, J) ndarray Binary region image with filled holes which has the same size as bounding box. **image_intensity** : ndarray Image inside region bounding box. **inertia_tensor** : ndarray Inertia tensor of the region for the rotation around its mass. **inertia_tensor_eigvals** : tuple The eigenvalues of the inertia tensor in decreasing order. **intensity_max** : float Value with the greatest intensity in the region. **intensity_mean** : float Value with the mean intensity in the region. **intensity_min** : float Value with the least intensity in the region. **label** : int The label in the labeled input image. **moments** : (3, 3) ndarray Spatial moments up to 3rd order:: m_ij = sum{ array(row, col) * row^i * col^j } where the sum is over the `row`, `col` coordinates of the region. **moments_central** : (3, 3) ndarray Central moments (translation invariant) up to 3rd order:: mu_ij = sum{ array(row, col) * (row - row_c)^i * (col - col_c)^j } where the sum is over the `row`, `col` coordinates of the region, and `row_c` and `col_c` are the coordinates of the region's centroid. **moments_hu** : tuple Hu moments (translation, scale and rotation invariant). **moments_normalized** : (3, 3) ndarray Normalized moments (translation and scale invariant) up to 3rd order:: nu_ij = mu_ij / m_00^[(i+j)/2 + 1] where `m_00` is the zeroth spatial moment. **moments_weighted** : (3, 3) ndarray Spatial moments of intensity image up to 3rd order:: wm_ij = sum{ array(row, col) * row^i * col^j } where the sum is over the `row`, `col` coordinates of the region. **moments_weighted_central** : (3, 3) ndarray Central moments (translation invariant) of intensity image up to 3rd order:: wmu_ij = sum{ array(row, col) * (row - row_c)^i * (col - col_c)^j } where the sum is over the `row`, `col` coordinates of the region, and `row_c` and `col_c` are the coordinates of the region's weighted centroid. **moments_weighted_hu** : tuple Hu moments (translation, scale and rotation invariant) of intensity image. **moments_weighted_normalized** : (3, 3) ndarray Normalized moments (translation and scale invariant) of intensity image up to 3rd order:: wnu_ij = wmu_ij / wm_00^[(i+j)/2 + 1] where ``wm_00`` is the zeroth spatial moment (intensity-weighted area). **orientation** : float Angle between the 0th axis (rows) and the major axis of the ellipse that has the same second moments as the region, ranging from `-pi/2` to `pi/2` counter-clockwise. **perimeter** : float Perimeter of object which approximates the contour as a line through the centers of border pixels using a 4-connectivity. **perimeter_crofton** : float Perimeter of object approximated by the Crofton formula in 4 directions. **slice** : tuple of slices A slice to extract the object from the source image. **solidity** : float Ratio of pixels in the region to pixels of the convex hull image. Each region also supports iteration, so that you can do:: for prop in region: print(prop, region[prop]) See Also -------- label References ---------- .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing: Core Algorithms. Springer-Verlag, London, 2009. .. [2] B. Jähne. Digital Image Processing. Springer-Verlag, Berlin-Heidelberg, 6. edition, 2005. .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features, from Lecture notes in computer science, p. 676. Springer, Berlin, 1993. .. [4] https://en.wikipedia.org/wiki/Image_moment .. [5] W. Pabst, E. Gregorová. Characterization of particles and particle systems, pp. 27-28. ICT Prague, 2007. https://old.vscht.cz/sil/keramika/Characterization_of_particles/CPPS%20_English%20version_.pdf Examples -------- >>> from skimage import data, util >>> from skimage.measure import label, regionprops >>> img = util.img_as_ubyte(data.coins()) > 110 >>> label_img = label(img, connectivity=img.ndim) >>> props = regionprops(label_img) >>> # centroid of first labeled object >>> props[0].centroid (22.72987986048314, 81.91228523446583) >>> # centroid of first labeled object >>> props[0]['centroid'] (22.72987986048314, 81.91228523446583) Add custom measurements by passing functions as ``extra_properties`` >>> from skimage import data, util >>> from skimage.measure import label, regionprops >>> import numpy as np >>> img = util.img_as_ubyte(data.coins()) > 110 >>> label_img = label(img, connectivity=img.ndim) >>> def pixelcount(regionmask): ... return np.sum(regionmask) >>> props = regionprops(label_img, extra_properties=(pixelcount,)) >>> props[0].pixelcount 7741 >>> props[1]['pixelcount'] 42 """ if label_image.ndim not in (2, 3): raise TypeError('Only 2-D and 3-D images supported.') if not np.issubdtype(label_image.dtype, np.integer): if np.issubdtype(label_image.dtype, bool): raise TypeError( 'Non-integer image types are ambiguous: ' 'use skimage.measure.label to label the connected' 'components of label_image,' 'or label_image.astype(np.uint8) to interpret' 'the True values as a single label.') else: raise TypeError( 'Non-integer label_image types are ambiguous') if coordinates is not None: if coordinates == 'rc': msg = ('The coordinates keyword argument to skimage.measure.' 'regionprops is deprecated. All features are now computed ' 'in rc (row-column) coordinates. Please remove ' '`coordinates="rc"` from all calls to regionprops before ' 'updating scikit-image.') warn(msg, stacklevel=2, category=FutureWarning) else: msg = ('Values other than "rc" for the "coordinates" argument ' 'to skimage.measure.regionprops are no longer supported. ' 'You should update your code to use "rc" coordinates and ' 'stop using the "coordinates" argument, or use skimage ' 'version 0.15.x or earlier.') raise ValueError(msg) regions = [] objects = ndi.find_objects(label_image) for i, sl in enumerate(objects): if sl is None: continue label = i + 1 props = RegionProperties(sl, label, label_image, intensity_image, cache, extra_properties=extra_properties) regions.append(props) return regions def _parse_docs(): import re import textwrap doc = regionprops.__doc__ or '' matches = re.finditer(r'\*\*(\w+)\*\* \:.*?\n(.*?)(?=\n [\*\S]+)', doc, flags=re.DOTALL) prop_doc = {m.group(1): textwrap.dedent(m.group(2)) for m in matches} return prop_doc def _install_properties_docs(): prop_doc = _parse_docs() for p in [member for member in dir(RegionProperties) if not member.startswith('_')]: getattr(RegionProperties, p).__doc__ = prop_doc[p] if __debug__: # don't install docstrings when in optimized/non-debug mode _install_properties_docs()