import numpy as np from ..util import view_as_blocks def block_reduce(image, block_size=2, func=np.sum, cval=0, func_kwargs=None): """Downsample image by applying function `func` to local blocks. This function is useful for max and mean pooling, for example. Parameters ---------- image : ndarray N-dimensional input image. block_size : array_like or int Array containing down-sampling integer factor along each axis. Default block_size is 2. func : callable Function object which is used to calculate the return value for each local block. This function must implement an ``axis`` parameter. Primary functions are ``numpy.sum``, ``numpy.min``, ``numpy.max``, ``numpy.mean`` and ``numpy.median``. See also `func_kwargs`. cval : float Constant padding value if image is not perfectly divisible by the block size. func_kwargs : dict Keyword arguments passed to `func`. Notably useful for passing dtype argument to ``np.mean``. Takes dictionary of inputs, e.g.: ``func_kwargs={'dtype': np.float16})``. Returns ------- image : ndarray Down-sampled image with same number of dimensions as input image. Examples -------- >>> from skimage.measure import block_reduce >>> image = np.arange(3*3*4).reshape(3, 3, 4) >>> image # doctest: +NORMALIZE_WHITESPACE array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]], [[24, 25, 26, 27], [28, 29, 30, 31], [32, 33, 34, 35]]]) >>> block_reduce(image, block_size=(3, 3, 1), func=np.mean) array([[[16., 17., 18., 19.]]]) >>> image_max1 = block_reduce(image, block_size=(1, 3, 4), func=np.max) >>> image_max1 # doctest: +NORMALIZE_WHITESPACE array([[[11]], [[23]], [[35]]]) >>> image_max2 = block_reduce(image, block_size=(3, 1, 4), func=np.max) >>> image_max2 # doctest: +NORMALIZE_WHITESPACE array([[[27], [31], [35]]]) """ if np.isscalar(block_size): block_size = (block_size,) * image.ndim elif len(block_size) != image.ndim: raise ValueError("`block_size` must be a scalar or have " "the same length as `image.shape`") if func_kwargs is None: func_kwargs = {} pad_width = [] for i in range(len(block_size)): if block_size[i] < 1: raise ValueError("Down-sampling factors must be >= 1. Use " "`skimage.transform.resize` to up-sample an " "image.") if image.shape[i] % block_size[i] != 0: after_width = block_size[i] - (image.shape[i] % block_size[i]) else: after_width = 0 pad_width.append((0, after_width)) image = np.pad(image, pad_width=pad_width, mode='constant', constant_values=cval) blocked = view_as_blocks(image, block_size) return func(blocked, axis=tuple(range(image.ndim, blocked.ndim)), **func_kwargs)