import numpy as np from skimage.measure import block_reduce from skimage._shared import testing from skimage._shared.testing import assert_equal def test_block_reduce_sum(): image1 = np.arange(4 * 6).reshape(4, 6) out1 = block_reduce(image1, (2, 3)) expected1 = np.array([[ 24, 42], [ 96, 114]]) assert_equal(expected1, out1) image2 = np.arange(5 * 8).reshape(5, 8) out2 = block_reduce(image2, (3, 3)) expected2 = np.array([[ 81, 108, 87], [174, 192, 138]]) assert_equal(expected2, out2) def test_block_reduce_mean(): image1 = np.arange(4 * 6).reshape(4, 6) out1 = block_reduce(image1, (2, 3), func=np.mean) expected1 = np.array([[ 4., 7.], [ 16., 19.]]) assert_equal(expected1, out1) image2 = np.arange(5 * 8).reshape(5, 8) out2 = block_reduce(image2, (4, 5), func=np.mean) expected2 = np.array([[14. , 10.8], [ 8.5, 5.7]]) assert_equal(expected2, out2) def test_block_reduce_median(): image1 = np.arange(4 * 6).reshape(4, 6) out1 = block_reduce(image1, (2, 3), func=np.median) expected1 = np.array([[ 4., 7.], [ 16., 19.]]) assert_equal(expected1, out1) image2 = np.arange(5 * 8).reshape(5, 8) out2 = block_reduce(image2, (4, 5), func=np.median) expected2 = np.array([[ 14., 6.5], [ 0., 0. ]]) assert_equal(expected2, out2) image3 = np.array([[1, 5, 5, 5], [5, 5, 5, 1000]]) out3 = block_reduce(image3, (2, 4), func=np.median) assert_equal(5, out3) def test_block_reduce_min(): image1 = np.arange(4 * 6).reshape(4, 6) out1 = block_reduce(image1, (2, 3), func=np.min) expected1 = np.array([[ 0, 3], [12, 15]]) assert_equal(expected1, out1) image2 = np.arange(5 * 8).reshape(5, 8) out2 = block_reduce(image2, (4, 5), func=np.min) expected2 = np.array([[0, 0], [0, 0]]) assert_equal(expected2, out2) def test_block_reduce_max(): image1 = np.arange(4 * 6).reshape(4, 6) out1 = block_reduce(image1, (2, 3), func=np.max) expected1 = np.array([[ 8, 11], [20, 23]]) assert_equal(expected1, out1) image2 = np.arange(5 * 8).reshape(5, 8) out2 = block_reduce(image2, (4, 5), func=np.max) expected2 = np.array([[28, 31], [36, 39]]) assert_equal(expected2, out2) def test_invalid_block_size(): image = np.arange(4 * 6).reshape(4, 6) with testing.raises(ValueError): block_reduce(image, [1, 2, 3]) with testing.raises(ValueError): block_reduce(image, [1, 0.5]) def test_default_block_size(): image = np.arange(4 * 6).reshape(4, 6) out = block_reduce(image, func=np.min) expected = np.array([[0, 2, 4], [12, 14, 16]]) assert_equal(expected, out) def test_scalar_block_size(): image = np.arange(6 * 6).reshape(6, 6) out = block_reduce(image, 3, func=np.min) expected1 = np.array([[0, 3], [18, 21]]) assert_equal(expected1, out) expected2 = block_reduce(image, (3, 3), func=np.min) assert_equal(expected2, out) def test_func_kwargs_same_dtype(): image = np.array([[97, 123, 173, 227], [217, 241, 221, 214], [211, 11, 170, 53], [214, 205, 101, 57]], dtype=np.uint8) out = block_reduce(image, (2, 2), func=np.mean, func_kwargs={'dtype': np.uint8}) expected = np.array([[41, 16], [32, 31]], dtype=np.uint8) assert_equal(out, expected) assert out.dtype == expected.dtype def test_func_kwargs_different_dtype(): image = np.array([[0.45745366, 0.67479345, 0.20949775, 0.3147348], [0.7209286, 0.88915504, 0.66153409, 0.07919526], [0.04640037, 0.54008495, 0.34664343, 0.56152301], [0.58085003, 0.80144708, 0.87844473, 0.29811511]], dtype=np.float64) out = block_reduce(image, (2, 2), func=np.mean, func_kwargs={'dtype': np.float16}) expected = np.array([[0.6855, 0.3164], [0.4922, 0.521]], dtype=np.float16) assert_equal(out, expected) assert out.dtype == expected.dtype