import numpy as np from skimage._shared import testing from skimage._shared._warnings import expected_warnings from skimage._shared.testing import (arch32, assert_almost_equal, assert_array_less, assert_equal, xfail) from skimage.measure import LineModelND, CircleModel, EllipseModel, ransac from skimage.measure.fit import _dynamic_max_trials from skimage.transform import AffineTransform def test_line_model_invalid_input(): with testing.raises(ValueError): LineModelND().estimate(np.empty((1, 3))) def test_line_model_predict(): model = LineModelND() model.params = ((0, 0), (1, 1)) x = np.arange(-10, 10) y = model.predict_y(x) assert_almost_equal(x, model.predict_x(y)) def test_line_model_nd_invalid_input(): with testing.raises(ValueError): LineModelND().predict_x(np.zeros(1)) with testing.raises(ValueError): LineModelND().predict_y(np.zeros(1)) with testing.raises(ValueError): LineModelND().predict_x(np.zeros(1), np.zeros(1)) with testing.raises(ValueError): LineModelND().predict_y(np.zeros(1)) with testing.raises(ValueError): LineModelND().predict_y(np.zeros(1), np.zeros(1)) with testing.raises(ValueError): LineModelND().estimate(np.empty((1, 3))) with testing.raises(ValueError): LineModelND().residuals(np.empty((1, 3))) data = np.empty((1, 2)) with testing.raises(ValueError): LineModelND().estimate(data) def test_line_model_nd_predict(): model = LineModelND() model.params = (np.array([0, 0]), np.array([0.2, 0.8])) x = np.arange(-10, 10) y = model.predict_y(x) assert_almost_equal(x, model.predict_x(y)) def test_line_model_nd_estimate(): # generate original data without noise model0 = LineModelND() model0.params = (np.array([0, 0, 0], dtype='float'), np.array([1, 1, 1], dtype='float')/np.sqrt(3)) # we scale the unit vector with a factor 10 when generating points on the # line in order to compensate for the scale of the random noise data0 = (model0.params[0] + 10 * np.arange(-100, 100)[..., np.newaxis] * model0.params[1]) # add gaussian noise to data random_state = np.random.default_rng(1234) data = data0 + random_state.normal(size=data0.shape) # estimate parameters of noisy data model_est = LineModelND() model_est.estimate(data) # assert_almost_equal(model_est.residuals(data0), np.zeros(len(data)), 1) # test whether estimated parameters are correct # we use the following geometric property: two aligned vectors have # a cross-product equal to zero # test if direction vectors are aligned assert_almost_equal(np.linalg.norm(np.cross(model0.params[1], model_est.params[1])), 0, 1) # test if origins are aligned with the direction a = model_est.params[0] - model0.params[0] if np.linalg.norm(a) > 0: a /= np.linalg.norm(a) assert_almost_equal(np.linalg.norm(np.cross(model0.params[1], a)), 0, 1) def test_line_model_nd_residuals(): model = LineModelND() model.params = (np.array([0, 0, 0]), np.array([0, 0, 1])) assert_equal(abs(model.residuals(np.array([[0, 0, 0]]))), 0) assert_equal(abs(model.residuals(np.array([[0, 0, 1]]))), 0) assert_equal(abs(model.residuals(np.array([[10, 0, 0]]))), 10) # test params argument in model.rediduals data = np.array([[10, 0, 0]]) params = (np.array([0, 0, 0]), np.array([2, 0, 0])) assert_equal(abs(model.residuals(data, params=params)), 30) def test_line_modelND_under_determined(): data = np.empty((1, 3)) with testing.raises(ValueError): LineModelND().estimate(data) def test_circle_model_invalid_input(): with testing.raises(ValueError): CircleModel().estimate(np.empty((5, 3))) def test_circle_model_predict(): model = CircleModel() r = 5 model.params = (0, 0, r) t = np.arange(0, 2 * np.pi, np.pi / 2) xy = np.array(((5, 0), (0, 5), (-5, 0), (0, -5))) assert_almost_equal(xy, model.predict_xy(t)) def test_circle_model_estimate(): # generate original data without noise model0 = CircleModel() model0.params = (10, 12, 3) t = np.linspace(0, 2 * np.pi, 1000) data0 = model0.predict_xy(t) # add gaussian noise to data random_state = np.random.default_rng(1234) data = data0 + random_state.normal(size=data0.shape) # estimate parameters of noisy data model_est = CircleModel() model_est.estimate(data) # test whether estimated parameters almost equal original parameters assert_almost_equal(model0.params, model_est.params, 0) def test_circle_model_int_overflow(): xy = np.array([[1, 0], [0, 1], [-1, 0], [0, -1]], dtype=np.int32) xy += 500 model = CircleModel() model.estimate(xy) assert_almost_equal(model.params, [500, 500, 1]) def test_circle_model_residuals(): model = CircleModel() model.params = (0, 0, 5) assert_almost_equal(abs(model.residuals(np.array([[5, 0]]))), 0) assert_almost_equal(abs(model.residuals(np.array([[6, 6]]))), np.sqrt(2 * 6**2) - 5) assert_almost_equal(abs(model.residuals(np.array([[10, 0]]))), 5) def test_circle_model_insufficient_data(): model = CircleModel() with expected_warnings(["Input data does not contain enough significant"]): model.estimate(np.array([[1, 2], [3, 4]])) with expected_warnings(["Input data does not contain enough significant"]): model.estimate(np.ones((6, 2))) with expected_warnings(["Input data does not contain enough significant"]): model.estimate(np.array([[0, 0], [1, 1], [2, 2]])) def test_ellipse_model_invalid_input(): with testing.raises(ValueError): EllipseModel().estimate(np.empty((5, 3))) def test_ellipse_model_predict(): model = EllipseModel() model.params = (0, 0, 5, 10, 0) t = np.arange(0, 2 * np.pi, np.pi / 2) xy = np.array(((5, 0), (0, 10), (-5, 0), (0, -10))) assert_almost_equal(xy, model.predict_xy(t)) def test_ellipse_model_estimate(): for angle in range(0, 180, 15): rad = np.deg2rad(angle) # generate original data without noise model0 = EllipseModel() model0.params = (10, 20, 15, 25, rad) t = np.linspace(0, 2 * np.pi, 100) data0 = model0.predict_xy(t) # add gaussian noise to data random_state = np.random.default_rng(1234) data = data0 + random_state.normal(size=data0.shape) # estimate parameters of noisy data model_est = EllipseModel() model_est.estimate(data) # test whether estimated parameters almost equal original parameters assert_almost_equal(model0.params[:2], model_est.params[:2], 0) res = model_est.residuals(data0) assert_array_less(res, np.ones(res.shape)) def test_ellipse_model_estimate_from_data(): data = np.array([ [264, 854], [265, 875], [268, 863], [270, 857], [275, 905], [285, 915], [305, 925], [324, 934], [335, 764], [336, 915], [345, 925], [345, 945], [354, 933], [355, 745], [364, 936], [365, 754], [375, 745], [375, 735], [385, 736], [395, 735], [394, 935], [405, 727], [415, 736], [415, 727], [425, 727], [426, 929], [435, 735], [444, 933], [445, 735], [455, 724], [465, 934], [465, 735], [475, 908], [475, 726], [485, 753], [485, 728], [492, 762], [495, 745], [491, 910], [493, 909], [499, 904], [505, 905], [504, 747], [515, 743], [516, 752], [524, 855], [525, 844], [525, 885], [533, 845], [533, 873], [535, 883], [545, 874], [543, 864], [553, 865], [553, 845], [554, 825], [554, 835], [563, 845], [565, 826], [563, 855], [563, 795], [565, 735], [573, 778], [572, 815], [574, 804], [575, 665], [575, 685], [574, 705], [574, 745], [575, 875], [572, 732], [582, 795], [579, 709], [583, 805], [583, 854], [586, 755], [584, 824], [585, 655], [581, 718], [586, 844], [585, 915], [587, 905], [594, 824], [593, 855], [590, 891], [594, 776], [596, 767], [593, 763], [603, 785], [604, 775], [603, 885], [605, 753], [605, 655], [606, 935], [603, 761], [613, 802], [613, 945], [613, 965], [615, 693], [617, 665], [623, 962], [624, 972], [625, 995], [633, 673], [633, 965], [633, 683], [633, 692], [633, 954], [634, 1016], [635, 664], [641, 804], [637, 999], [641, 956], [643, 946], [643, 926], [644, 975], [643, 655], [646, 705], [651, 664], [651, 984], [647, 665], [651, 715], [651, 725], [651, 734], [647, 809], [651, 825], [651, 873], [647, 900], [652, 917], [651, 944], [652, 742], [648, 811], [651, 994], [652, 783], [650, 911], [654, 879]], dtype=np.int32) # estimate parameters of real data model = EllipseModel() model.estimate(data) # test whether estimated parameters are smaller then 1000, so means stable assert_array_less(model.params[:4], np.full(4, 1000)) # test whether all parameters are more than 0. Negative values were the # result of an integer overflow assert_array_less(np.zeros(4), np.abs(model.params[:4])) @xfail(condition=arch32, reason=('Known test failure on 32-bit platforms. See links for ' 'details: ' 'https://github.com/scikit-image/scikit-image/issues/3091 ' 'https://github.com/scikit-image/scikit-image/issues/2670')) def test_ellipse_model_estimate_failers(): # estimate parameters of real data model = EllipseModel() assert not model.estimate(np.ones((5, 2))) assert not model.estimate(np.array([[50, 80], [51, 81], [52, 80]])) def test_ellipse_model_residuals(): model = EllipseModel() # vertical line through origin model.params = (0, 0, 10, 5, 0) assert_almost_equal(abs(model.residuals(np.array([[10, 0]]))), 0) assert_almost_equal(abs(model.residuals(np.array([[0, 5]]))), 0) assert_almost_equal(abs(model.residuals(np.array([[0, 10]]))), 5) def test_ransac_shape(): # generate original data without noise model0 = CircleModel() model0.params = (10, 12, 3) t = np.linspace(0, 2 * np.pi, 1000) data0 = model0.predict_xy(t) # add some faulty data outliers = (10, 30, 200) data0[outliers[0], :] = (1000, 1000) data0[outliers[1], :] = (-50, 50) data0[outliers[2], :] = (-100, -10) # estimate parameters of corrupted data model_est, inliers = ransac(data0, CircleModel, 3, 5, random_state=1) # test whether estimated parameters equal original parameters assert_almost_equal(model0.params, model_est.params) for outlier in outliers: assert outlier not in inliers def test_ransac_geometric(): random_state = np.random.default_rng(12373240) # generate original data without noise src = 100 * random_state.random((50, 2)) model0 = AffineTransform(scale=(0.5, 0.3), rotation=1, translation=(10, 20)) dst = model0(src) # add some faulty data outliers = (0, 5, 20) dst[outliers[0]] = (10000, 10000) dst[outliers[1]] = (-100, 100) dst[outliers[2]] = (50, 50) # estimate parameters of corrupted data model_est, inliers = ransac((src, dst), AffineTransform, 2, 20, random_state=random_state) # test whether estimated parameters equal original parameters assert_almost_equal(model0.params, model_est.params) assert np.all(np.nonzero(inliers == False)[0] == outliers) def test_ransac_is_data_valid(): def is_data_valid(data): return data.shape[0] > 2 with expected_warnings(["No inliers found"]): model, inliers = ransac(np.empty((10, 2)), LineModelND, 2, np.inf, is_data_valid=is_data_valid, random_state=1) assert_equal(model, None) assert_equal(inliers, None) def test_ransac_is_model_valid(): def is_model_valid(model, data): return False with expected_warnings(["No inliers found"]): model, inliers = ransac(np.empty((10, 2)), LineModelND, 2, np.inf, is_model_valid=is_model_valid, random_state=1) assert_equal(model, None) assert_equal(inliers, None) def test_ransac_dynamic_max_trials(): # Numbers hand-calculated and confirmed on page 119 (Table 4.3) in # Hartley, R.~I. and Zisserman, A., 2004, # Multiple View Geometry in Computer Vision, Second Edition, # Cambridge University Press, ISBN: 0521540518 # e = 0%, min_samples = X assert_equal(_dynamic_max_trials(100, 100, 2, 0.99), 1) # e = 5%, min_samples = 2 assert_equal(_dynamic_max_trials(95, 100, 2, 0.99), 2) # e = 10%, min_samples = 2 assert_equal(_dynamic_max_trials(90, 100, 2, 0.99), 3) # e = 30%, min_samples = 2 assert_equal(_dynamic_max_trials(70, 100, 2, 0.99), 7) # e = 50%, min_samples = 2 assert_equal(_dynamic_max_trials(50, 100, 2, 0.99), 17) # e = 5%, min_samples = 8 assert_equal(_dynamic_max_trials(95, 100, 8, 0.99), 5) # e = 10%, min_samples = 8 assert_equal(_dynamic_max_trials(90, 100, 8, 0.99), 9) # e = 30%, min_samples = 8 assert_equal(_dynamic_max_trials(70, 100, 8, 0.99), 78) # e = 50%, min_samples = 8 assert_equal(_dynamic_max_trials(50, 100, 8, 0.99), 1177) # e = 0%, min_samples = 5 assert_equal(_dynamic_max_trials(1, 100, 5, 0), 0) assert_equal(_dynamic_max_trials(1, 100, 5, 1), np.inf) def test_ransac_invalid_input(): # `residual_threshold` must be greater than zero with testing.raises(ValueError): ransac(np.zeros((10, 2)), None, min_samples=2, residual_threshold=-0.5) # "`max_trials` must be greater than zero" with testing.raises(ValueError): ransac(np.zeros((10, 2)), None, min_samples=2, residual_threshold=0, max_trials=-1) # `stop_probability` must be in range (0, 1) with testing.raises(ValueError): ransac(np.zeros((10, 2)), None, min_samples=2, residual_threshold=0, stop_probability=-1) # `stop_probability` must be in range (0, 1) with testing.raises(ValueError): ransac(np.zeros((10, 2)), None, min_samples=2, residual_threshold=0, stop_probability=1.01) # `min_samples` as ratio must be in range (0, nb) with testing.raises(ValueError): ransac(np.zeros((10, 2)), None, min_samples=0, residual_threshold=0) # `min_samples` as ratio must be in range (0, nb) with testing.raises(ValueError): ransac(np.zeros((10, 2)), None, min_samples=10, residual_threshold=0) # `min_samples` must be greater than zero with testing.raises(ValueError): ransac(np.zeros((10, 2)), None, min_samples=-1, residual_threshold=0) def test_ransac_sample_duplicates(): class DummyModel(object): """Dummy model to check for duplicates.""" def estimate(self, data): # Assert that all data points are unique. assert_equal(np.unique(data).size, data.size) return True def residuals(self, data): return np.ones(len(data), dtype=np.double) # Create dataset with four unique points. Force 10 iterations # and check that there are no duplicated data points. data = np.arange(4) with expected_warnings(["No inliers found"]): ransac(data, DummyModel, min_samples=3, residual_threshold=0.0, max_trials=10) def test_ransac_with_no_final_inliers(): data = np.random.rand(5, 2) with expected_warnings(['No inliers found. Model not fitted']): model, inliers = ransac(data, model_class=LineModelND, min_samples=3, residual_threshold=0, random_state=1523427) assert inliers is None assert model is None def test_ransac_non_valid_best_model(): """Example from GH issue #5572""" def is_model_valid(model, *random_data) -> bool: """Allow models with a maximum of 10 degree tilt from the vertical """ tilt = abs(np.arccos(np.dot(model.params[1], [0, 0, 1]))) return tilt <= (10 / 180 * np.pi) rnd = np.random.RandomState(1) data = np.linspace([0, 0, 0], [0.3, 0, 1], 1000) + rnd.rand(1000, 3) - 0.5 with expected_warnings(["Estimated model is not valid"]): ransac(data, LineModelND, min_samples=2, residual_threshold=0.3, max_trials=50, random_state=0, is_model_valid=is_model_valid)