import numpy as np from ..._shared.testing import assert_equal, assert_almost_equal from ..profile import profile_line image = np.arange(100).reshape((10, 10)).astype(float) def test_horizontal_rightward(): prof = profile_line(image, (0, 2), (0, 8), order=0, mode='constant') expected_prof = np.arange(2, 9) assert_equal(prof, expected_prof) def test_horizontal_leftward(): prof = profile_line(image, (0, 8), (0, 2), order=0, mode='constant') expected_prof = np.arange(8, 1, -1) assert_equal(prof, expected_prof) def test_vertical_downward(): prof = profile_line(image, (2, 5), (8, 5), order=0, mode='constant') expected_prof = np.arange(25, 95, 10) assert_equal(prof, expected_prof) def test_vertical_upward(): prof = profile_line(image, (8, 5), (2, 5), order=0, mode='constant') expected_prof = np.arange(85, 15, -10) assert_equal(prof, expected_prof) def test_45deg_right_downward(): prof = profile_line(image, (2, 2), (8, 8), order=0, mode='constant') expected_prof = np.array([22, 33, 33, 44, 55, 55, 66, 77, 77, 88]) # repeats are due to aliasing using nearest neighbor interpolation. # to see this, imagine a diagonal line with markers every unit of # length traversing a checkerboard pattern of squares also of unit # length. Because the line is diagonal, sometimes more than one # marker will fall on the same checkerboard box. assert_almost_equal(prof, expected_prof) def test_45deg_right_downward_interpolated(): prof = profile_line(image, (2, 2), (8, 8), order=1, mode='constant') expected_prof = np.linspace(22, 88, 10) assert_almost_equal(prof, expected_prof) def test_45deg_right_upward(): prof = profile_line(image, (8, 2), (2, 8), order=1, mode='constant') expected_prof = np.arange(82, 27, -6) assert_almost_equal(prof, expected_prof) def test_45deg_left_upward(): prof = profile_line(image, (8, 8), (2, 2), order=1, mode='constant') expected_prof = np.arange(88, 21, -22. / 3) assert_almost_equal(prof, expected_prof) def test_45deg_left_downward(): prof = profile_line(image, (2, 8), (8, 2), order=1, mode='constant') expected_prof = np.arange(28, 83, 6) assert_almost_equal(prof, expected_prof) def test_pythagorean_triangle_right_downward(): prof = profile_line(image, (1, 1), (7, 9), order=0, mode='constant') expected_prof = np.array([11, 22, 23, 33, 34, 45, 56, 57, 67, 68, 79]) assert_equal(prof, expected_prof) def test_pythagorean_triangle_right_downward_interpolated(): prof = profile_line(image, (1, 1), (7, 9), order=1, mode='constant') expected_prof = np.linspace(11, 79, 11) assert_almost_equal(prof, expected_prof) pyth_image = np.zeros((6, 7), float) line = ((1, 2, 2, 3, 3, 4), (1, 2, 3, 3, 4, 5)) below = ((2, 2, 3, 4, 4, 5), (0, 1, 2, 3, 4, 4)) above = ((0, 1, 1, 2, 3, 3), (2, 2, 3, 4, 5, 6)) pyth_image[line] = 1.8 pyth_image[below] = 0.6 pyth_image[above] = 0.6 def test_pythagorean_triangle_right_downward_linewidth(): prof = profile_line(pyth_image, (1, 1), (4, 5), linewidth=3, order=0, mode='constant') expected_prof = np.ones(6) assert_almost_equal(prof, expected_prof) def test_pythagorean_triangle_right_upward_linewidth(): prof = profile_line(pyth_image[::-1, :], (4, 1), (1, 5), linewidth=3, order=0, mode='constant') expected_prof = np.ones(6) assert_almost_equal(prof, expected_prof) def test_pythagorean_triangle_transpose_left_down_linewidth(): prof = profile_line(pyth_image.T[:, ::-1], (1, 4), (5, 1), linewidth=3, order=0, mode='constant') expected_prof = np.ones(6) assert_almost_equal(prof, expected_prof) def test_reduce_func_mean(): prof = profile_line(pyth_image, (0, 1), (3, 1), linewidth=3, order=0, reduce_func=np.mean, mode='reflect') expected_prof = pyth_image[:4, :3].mean(1) assert_almost_equal(prof, expected_prof) def test_reduce_func_max(): prof = profile_line(pyth_image, (0, 1), (3, 1), linewidth=3, order=0, reduce_func=np.max, mode='reflect') expected_prof = pyth_image[:4, :3].max(1) assert_almost_equal(prof, expected_prof) def test_reduce_func_sum(): prof = profile_line(pyth_image, (0, 1), (3, 1), linewidth=3, order=0, reduce_func=np.sum, mode='reflect') expected_prof = pyth_image[:4, :3].sum(1) assert_almost_equal(prof, expected_prof) def test_reduce_func_mean_linewidth_1(): prof = profile_line(pyth_image, (0, 1), (3, 1), linewidth=1, order=0, reduce_func=np.mean, mode='constant') expected_prof = pyth_image[:4, 1] assert_almost_equal(prof, expected_prof) def test_reduce_func_None_linewidth_1(): prof = profile_line(pyth_image, (1, 2), (4, 2), linewidth=1, order=0, reduce_func=None, mode='constant') expected_prof = pyth_image[1:5, 2, np.newaxis] assert_almost_equal(prof, expected_prof) def test_reduce_func_None_linewidth_3(): prof = profile_line(pyth_image, (1, 2), (4, 2), linewidth=3, order=0, reduce_func=None, mode='constant') expected_prof = pyth_image[1:5, 1:4] assert_almost_equal(prof, expected_prof) def test_reduce_func_lambda_linewidth_3(): def reduce_func(x): return x + x ** 2 prof = profile_line(pyth_image, (1, 2), (4, 2), linewidth=3, order=0, reduce_func=reduce_func, mode='constant') expected_prof = np.apply_along_axis(reduce_func, arr=pyth_image[1:5, 1:4], axis=1) assert_almost_equal(prof, expected_prof) def test_reduce_func_sqrt_linewidth_3(): def reduce_func(x): return x ** 0.5 prof = profile_line(pyth_image, (1, 2), (4, 2), linewidth=3, order=0, reduce_func=reduce_func, mode='constant') expected_prof = np.apply_along_axis(reduce_func, arr=pyth_image[1:5, 1:4], axis=1) assert_almost_equal(prof, expected_prof) def test_reduce_func_sumofsqrt_linewidth_3(): def reduce_func(x): return np.sum(x ** 0.5) prof = profile_line(pyth_image, (1, 2), (4, 2), linewidth=3, order=0, reduce_func=reduce_func, mode='constant') expected_prof = np.apply_along_axis(reduce_func, arr=pyth_image[1:5, 1:4], axis=1) assert_almost_equal(prof, expected_prof) def test_oob_coodinates(): offset = 2 idx = pyth_image.shape[0] + offset prof = profile_line(pyth_image, (-offset, 2), (idx, 2), linewidth=1, order=0, reduce_func=None, mode='constant') expected_prof = np.vstack([np.zeros((offset, 1)), pyth_image[:, 2, np.newaxis], np.zeros((offset + 1, 1))]) assert_almost_equal(prof, expected_prof) def test_bool_array_input(): shape = (200, 200) center_x, center_y = (140, 150) radius = 20 x, y = np.meshgrid(range(shape[1]), range(shape[0])) mask = (y - center_y) ** 2 + (x - center_x) ** 2 < radius ** 2 src = (center_y, center_x) phi = 4 * np.pi / 9. dy = 31 * np.cos(phi) dx = 31 * np.sin(phi) dst = (center_y + dy, center_x + dx) profile_u8 = profile_line(mask.astype(np.uint8), src, dst, mode='reflect') assert all(profile_u8[:radius] == 1) profile_b = profile_line(mask, src, dst, mode='reflect') assert all(profile_b[:radius] == 1) assert all(profile_b == profile_u8)