import functools import numpy as np from scipy.ndimage import uniform_filter from .._shared import utils from .._shared.filters import gaussian from .._shared.utils import _supported_float_type, check_shape_equality, warn from ..util.arraycrop import crop from ..util.dtype import dtype_range __all__ = ['structural_similarity'] @utils.deprecate_multichannel_kwarg() def structural_similarity(im1, im2, *, win_size=None, gradient=False, data_range=None, channel_axis=None, multichannel=False, gaussian_weights=False, full=False, **kwargs): """ Compute the mean structural similarity index between two images. Parameters ---------- im1, im2 : ndarray Images. Any dimensionality with same shape. win_size : int or None, optional The side-length of the sliding window used in comparison. Must be an odd value. If `gaussian_weights` is True, this is ignored and the window size will depend on `sigma`. gradient : bool, optional If True, also return the gradient with respect to im2. data_range : float, optional The data range of the input image (distance between minimum and maximum possible values). By default, this is estimated from the image data-type. channel_axis : int or None, optional If None, the image is assumed to be a grayscale (single channel) image. Otherwise, this parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. multichannel : bool, optional If True, treat the last dimension of the array as channels. Similarity calculations are done independently for each channel then averaged. This argument is deprecated: specify `channel_axis` instead. gaussian_weights : bool, optional If True, each patch has its mean and variance spatially weighted by a normalized Gaussian kernel of width sigma=1.5. full : bool, optional If True, also return the full structural similarity image. Other Parameters ---------------- use_sample_covariance : bool If True, normalize covariances by N-1 rather than, N where N is the number of pixels within the sliding window. K1 : float Algorithm parameter, K1 (small constant, see [1]_). K2 : float Algorithm parameter, K2 (small constant, see [1]_). sigma : float Standard deviation for the Gaussian when `gaussian_weights` is True. Returns ------- mssim : float The mean structural similarity index over the image. grad : ndarray The gradient of the structural similarity between im1 and im2 [2]_. This is only returned if `gradient` is set to True. S : ndarray The full SSIM image. This is only returned if `full` is set to True. Notes ----- To match the implementation of Wang et. al. [1]_, set `gaussian_weights` to True, `sigma` to 1.5, and `use_sample_covariance` to False. .. versionchanged:: 0.16 This function was renamed from ``skimage.measure.compare_ssim`` to ``skimage.metrics.structural_similarity``. References ---------- .. [1] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612. https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf, :DOI:`10.1109/TIP.2003.819861` .. [2] Avanaki, A. N. (2009). Exact global histogram specification optimized for structural similarity. Optical Review, 16, 613-621. :arxiv:`0901.0065` :DOI:`10.1007/s10043-009-0119-z` """ check_shape_equality(im1, im2) float_type = _supported_float_type(im1.dtype) if channel_axis is not None: # loop over channels args = dict(win_size=win_size, gradient=gradient, data_range=data_range, channel_axis=None, gaussian_weights=gaussian_weights, full=full) args.update(kwargs) nch = im1.shape[channel_axis] mssim = np.empty(nch, dtype=float_type) if gradient: G = np.empty(im1.shape, dtype=float_type) if full: S = np.empty(im1.shape, dtype=float_type) channel_axis = channel_axis % im1.ndim _at = functools.partial(utils.slice_at_axis, axis=channel_axis) for ch in range(nch): ch_result = structural_similarity(im1[_at(ch)], im2[_at(ch)], **args) if gradient and full: mssim[ch], G[_at(ch)], S[_at(ch)] = ch_result elif gradient: mssim[ch], G[_at(ch)] = ch_result elif full: mssim[ch], S[_at(ch)] = ch_result else: mssim[ch] = ch_result mssim = mssim.mean() if gradient and full: return mssim, G, S elif gradient: return mssim, G elif full: return mssim, S else: return mssim K1 = kwargs.pop('K1', 0.01) K2 = kwargs.pop('K2', 0.03) sigma = kwargs.pop('sigma', 1.5) if K1 < 0: raise ValueError("K1 must be positive") if K2 < 0: raise ValueError("K2 must be positive") if sigma < 0: raise ValueError("sigma must be positive") use_sample_covariance = kwargs.pop('use_sample_covariance', True) if gaussian_weights: # Set to give an 11-tap filter with the default sigma of 1.5 to match # Wang et. al. 2004. truncate = 3.5 if win_size is None: if gaussian_weights: # set win_size used by crop to match the filter size r = int(truncate * sigma + 0.5) # radius as in ndimage win_size = 2 * r + 1 else: win_size = 7 # backwards compatibility if np.any((np.asarray(im1.shape) - win_size) < 0): raise ValueError( 'win_size exceeds image extent. ' 'Either ensure that your images are ' 'at least 7x7; or pass win_size explicitly ' 'in the function call, with an odd value ' 'less than or equal to the smaller side of your ' 'images. If your images are multichannel ' '(with color channels), set channel_axis to ' 'the axis number corresponding to the channels.') if not (win_size % 2 == 1): raise ValueError('Window size must be odd.') if data_range is None: if im1.dtype != im2.dtype: warn("Inputs have mismatched dtype. Setting data_range based on " "im1.dtype.", stacklevel=2) dmin, dmax = dtype_range[im1.dtype.type] data_range = dmax - dmin ndim = im1.ndim if gaussian_weights: filter_func = gaussian filter_args = {'sigma': sigma, 'truncate': truncate, 'mode': 'reflect'} else: filter_func = uniform_filter filter_args = {'size': win_size} # ndimage filters need floating point data im1 = im1.astype(float_type, copy=False) im2 = im2.astype(float_type, copy=False) NP = win_size ** ndim # filter has already normalized by NP if use_sample_covariance: cov_norm = NP / (NP - 1) # sample covariance else: cov_norm = 1.0 # population covariance to match Wang et. al. 2004 # compute (weighted) means ux = filter_func(im1, **filter_args) uy = filter_func(im2, **filter_args) # compute (weighted) variances and covariances uxx = filter_func(im1 * im1, **filter_args) uyy = filter_func(im2 * im2, **filter_args) uxy = filter_func(im1 * im2, **filter_args) vx = cov_norm * (uxx - ux * ux) vy = cov_norm * (uyy - uy * uy) vxy = cov_norm * (uxy - ux * uy) R = data_range C1 = (K1 * R) ** 2 C2 = (K2 * R) ** 2 A1, A2, B1, B2 = ((2 * ux * uy + C1, 2 * vxy + C2, ux ** 2 + uy ** 2 + C1, vx + vy + C2)) D = B1 * B2 S = (A1 * A2) / D # to avoid edge effects will ignore filter radius strip around edges pad = (win_size - 1) // 2 # compute (weighted) mean of ssim. Use float64 for accuracy. mssim = crop(S, pad).mean(dtype=np.float64) if gradient: # The following is Eqs. 7-8 of Avanaki 2009. grad = filter_func(A1 / D, **filter_args) * im1 grad += filter_func(-S / B2, **filter_args) * im2 grad += filter_func((ux * (A2 - A1) - uy * (B2 - B1) * S) / D, **filter_args) grad *= (2 / im1.size) if full: return mssim, grad, S else: return mssim, grad else: if full: return mssim, S else: return mssim