import warnings import numpy as np from scipy.spatial import cKDTree def hausdorff_distance(image0, image1): """Calculate the Hausdorff distance between nonzero elements of given images. The Hausdorff distance [1]_ is the maximum distance between any point on ``image0`` and its nearest point on ``image1``, and vice-versa. Parameters ---------- image0, image1 : ndarray Arrays where ``True`` represents a point that is included in a set of points. Both arrays must have the same shape. Returns ------- distance : float The Hausdorff distance between coordinates of nonzero pixels in ``image0`` and ``image1``, using the Euclidian distance. References ---------- .. [1] http://en.wikipedia.org/wiki/Hausdorff_distance Examples -------- >>> points_a = (3, 0) >>> points_b = (6, 0) >>> shape = (7, 1) >>> image_a = np.zeros(shape, dtype=bool) >>> image_b = np.zeros(shape, dtype=bool) >>> image_a[points_a] = True >>> image_b[points_b] = True >>> hausdorff_distance(image_a, image_b) 3.0 """ a_points = np.transpose(np.nonzero(image0)) b_points = np.transpose(np.nonzero(image1)) # Handle empty sets properly: # - if both sets are empty, return zero # - if only one set is empty, return infinity if len(a_points) == 0: return 0 if len(b_points) == 0 else np.inf elif len(b_points) == 0: return np.inf return max(max(cKDTree(a_points).query(b_points, k=1)[0]), max(cKDTree(b_points).query(a_points, k=1)[0])) def hausdorff_pair(image0, image1): """Returns pair of points that are Hausdorff distance apart between nonzero elements of given images. The Hausdorff distance [1]_ is the maximum distance between any point on ``image0`` and its nearest point on ``image1``, and vice-versa. Parameters ---------- image0, image1 : ndarray Arrays where ``True`` represents a point that is included in a set of points. Both arrays must have the same shape. Returns ------- point_a, point_b : array A pair of points that have Hausdorff distance between them. References ---------- .. [1] http://en.wikipedia.org/wiki/Hausdorff_distance Examples -------- >>> points_a = (3, 0) >>> points_b = (6, 0) >>> shape = (7, 1) >>> image_a = np.zeros(shape, dtype=bool) >>> image_b = np.zeros(shape, dtype=bool) >>> image_a[points_a] = True >>> image_b[points_b] = True >>> hausdorff_pair(image_a, image_b) (array([3, 0]), array([6, 0])) """ a_points = np.transpose(np.nonzero(image0)) b_points = np.transpose(np.nonzero(image1)) # If either of the sets are empty, there is no corresponding pair of points if len(a_points) == 0 or len(b_points) == 0: warnings.warn("One or both of the images is empty.", stacklevel=2) return (), () nearest_dists_from_b, nearest_a_point_indices_from_b = cKDTree(a_points) \ .query(b_points) nearest_dists_from_a, nearest_b_point_indices_from_a = cKDTree(b_points) \ .query(a_points) max_index_from_a = nearest_dists_from_b.argmax() max_index_from_b = nearest_dists_from_a.argmax() max_dist_from_a = nearest_dists_from_b[max_index_from_a] max_dist_from_b = nearest_dists_from_a[max_index_from_b] if max_dist_from_b > max_dist_from_a: return a_points[max_index_from_b], \ b_points[nearest_b_point_indices_from_a[max_index_from_b]] else: return a_points[nearest_a_point_indices_from_b[max_index_from_a]], \ b_points[max_index_from_a]