import itertools import numpy as np import pytest from numpy.testing import assert_almost_equal, assert_array_equal from scipy.spatial import distance from skimage._shared._warnings import expected_warnings from skimage.metrics import hausdorff_distance, hausdorff_pair def test_hausdorff_empty(): empty = np.zeros((0, 2), dtype=bool) non_empty = np.zeros((3, 2), dtype=bool) assert hausdorff_distance(empty, non_empty) == 0. with expected_warnings(["One or both of the images is empty"]): assert_array_equal(hausdorff_pair(empty, non_empty), [(), ()]) assert hausdorff_distance(non_empty, empty) == 0. with expected_warnings(["One or both of the images is empty"]): assert_array_equal(hausdorff_pair(non_empty, empty), [(), ()]) assert hausdorff_distance(empty, non_empty) == 0. with expected_warnings(["One or both of the images is empty"]): assert_array_equal(hausdorff_pair(empty, non_empty), [(), ()]) def test_hausdorff_simple(): points_a = (3, 0) points_b = (6, 0) shape = (7, 1) coords_a = np.zeros(shape, dtype=bool) coords_b = np.zeros(shape, dtype=bool) coords_a[points_a] = True coords_b[points_b] = True dist = np.sqrt(sum((ca - cb) ** 2 for ca, cb in zip(points_a, points_b))) assert_almost_equal(hausdorff_distance(coords_a, coords_b), dist) assert_array_equal(hausdorff_pair(coords_a, coords_b), (points_a, points_b)) @pytest.mark.parametrize( "points_a, points_b", itertools.product([(0, 0), (3, 0), (1, 4), (4, 1)], repeat=2) ) def test_hausdorff_region_single(points_a, points_b): shape = (5, 5) coords_a = np.zeros(shape, dtype=bool) coords_b = np.zeros(shape, dtype=bool) coords_a[points_a] = True coords_b[points_b] = True dist = np.sqrt(sum((ca - cb) ** 2 for ca, cb in zip(points_a, points_b))) assert_almost_equal(hausdorff_distance(coords_a, coords_b), dist) assert_array_equal(hausdorff_pair(coords_a, coords_b), (points_a, points_b)) @pytest.mark.parametrize( "points_a, points_b", itertools.product([(5, 4), (4, 5), (3, 4), (4, 3)], [(6, 4), (2, 6), (2, 4), (4, 0)]) ) def test_hausdorff_region_different_points(points_a, points_b): shape = (7, 7) coords_a = np.zeros(shape, dtype=bool) coords_b = np.zeros(shape, dtype=bool) coords_a[points_a] = True coords_b[points_b] = True dist = np.sqrt(sum((ca - cb) ** 2 for ca, cb in zip(points_a, points_b))) assert_almost_equal(hausdorff_distance(coords_a, coords_b), dist) assert_array_equal(hausdorff_pair(coords_a, coords_b), (points_a, points_b)) def test_gallery(): shape = (60, 60) # Create a diamond-like shape where the four corners form the 1st set # of points x_diamond = 30 y_diamond = 30 r = 10 plt_x = [0, 1, 0, -1] plt_y = [1, 0, -1, 0] set_ax = [(x_diamond + r * x) for x in plt_x] set_ay = [(y_diamond + r * y) for y in plt_y] # Create a kite-like shape where the four corners form the 2nd set of # points x_kite = 30 y_kite = 30 x_r = 15 y_r = 20 set_bx = [(x_kite + x_r * x) for x in plt_x] set_by = [(y_kite + y_r * y) for y in plt_y] # Set up the data to compute the Hausdorff distance coords_a = np.zeros(shape, dtype=bool) coords_b = np.zeros(shape, dtype=bool) for x, y in zip(set_ax, set_ay): coords_a[(x, y)] = True for x, y in zip(set_bx, set_by): coords_b[(x, y)] = True # Test the Hausdorff function on the coordinates # Should return 10, the distance between the furthest tip of the kite and # its closest point on the diamond, which is the furthest someone can make # you travel to encounter your nearest neighboring point on the other set. assert_almost_equal(hausdorff_distance(coords_a, coords_b), 10.) # There are two pairs of points ((30, 20), (30, 10) or (30, 40), (30, 50)), # that are Hausdorff distance apart. This tests for either of them. hd_points = hausdorff_pair(coords_a, coords_b) assert np.equal(hd_points, ((30, 20), (30, 10))).all() or \ np.equal(hd_points, ((30, 40), (30, 50))).all() @pytest.mark.parametrize( "points_a, points_b", itertools.product([(0, 0, 1), (0, 1, 0), (1, 0, 0)], [(0, 0, 2), (0, 2, 0), (2, 0, 0)]) ) def test_3d_hausdorff_region(points_a, points_b): shape = (3, 3, 3) coords_a = np.zeros(shape, dtype=bool) coords_b = np.zeros(shape, dtype=bool) coords_a[points_a] = True coords_b[points_b] = True dist = np.sqrt(sum((ca - cb) ** 2 for ca, cb in zip(points_a, points_b))) assert_almost_equal(hausdorff_distance(coords_a, coords_b), dist) assert_array_equal(hausdorff_pair(coords_a, coords_b), (points_a, points_b)) def test_hausdorff_metrics_match(): # Test that Hausdorff distance is the Euclidean distance between Hausdorff # pair points_a = (3, 0) points_b = (6, 0) shape = (7, 1) coords_a = np.zeros(shape, dtype=bool) coords_b = np.zeros(shape, dtype=bool) coords_a[points_a] = True coords_b[points_b] = True assert_array_equal(hausdorff_pair(coords_a, coords_b), (points_a, points_b)) euclidean_distance = distance.euclidean(points_a, points_b) assert_almost_equal(euclidean_distance, hausdorff_distance(coords_a, coords_b))