import math import unittest import numpy as np import pytest from numpy.testing import assert_equal from pytest import raises, warns from skimage._shared.testing import expected_warnings from skimage.morphology import extrema eps = 1e-12 def diff(a, b): a = np.asarray(a, dtype=np.float64) b = np.asarray(b, dtype=np.float64) t = ((a - b) ** 2).sum() return math.sqrt(t) class TestExtrema(): def test_saturated_arithmetic(self): """Adding/subtracting a constant and clipping""" # Test for unsigned integer data = np.array([[250, 251, 5, 5], [100, 200, 253, 252], [4, 10, 1, 3]], dtype=np.uint8) # adding the constant img_constant_added = extrema._add_constant_clip(data, 4) expected = np.array([[254, 255, 9, 9], [104, 204, 255, 255], [8, 14, 5, 7]], dtype=np.uint8) error = diff(img_constant_added, expected) assert error < eps img_constant_subtracted = extrema._subtract_constant_clip(data, 4) expected = np.array([[246, 247, 1, 1], [96, 196, 249, 248], [0, 6, 0, 0]], dtype=np.uint8) error = diff(img_constant_subtracted, expected) assert error < eps # Test for signed integer data = np.array([[32767, 32766], [-32768, -32767]], dtype=np.int16) img_constant_added = extrema._add_constant_clip(data, 1) expected = np.array([[32767, 32767], [-32767, -32766]], dtype=np.int16) error = diff(img_constant_added, expected) assert error < eps img_constant_subtracted = extrema._subtract_constant_clip(data, 1) expected = np.array([[32766, 32765], [-32768, -32768]], dtype=np.int16) error = diff(img_constant_subtracted, expected) assert error < eps def test_h_maxima(self): """h-maxima for various data types""" data = np.array([[10, 11, 13, 14, 14, 15, 14, 14, 13, 11], [11, 13, 15, 16, 16, 16, 16, 16, 15, 13], [13, 15, 40, 40, 18, 18, 18, 60, 60, 15], [14, 16, 40, 40, 19, 19, 19, 60, 60, 16], [14, 16, 18, 19, 19, 19, 19, 19, 18, 16], [15, 16, 18, 19, 19, 20, 19, 19, 18, 16], [14, 16, 18, 19, 19, 19, 19, 19, 18, 16], [14, 16, 80, 80, 19, 19, 19, 100, 100, 16], [13, 15, 80, 80, 18, 18, 18, 100, 100, 15], [11, 13, 15, 16, 16, 16, 16, 16, 15, 13]], dtype=np.uint8) expected_result = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) for dtype in [np.uint8, np.uint64, np.int8, np.int64]: data = data.astype(dtype) out = extrema.h_maxima(data, 40) error = diff(expected_result, out) assert error < eps def test_h_minima(self): """h-minima for various data types""" data = np.array([[10, 11, 13, 14, 14, 15, 14, 14, 13, 11], [11, 13, 15, 16, 16, 16, 16, 16, 15, 13], [13, 15, 40, 40, 18, 18, 18, 60, 60, 15], [14, 16, 40, 40, 19, 19, 19, 60, 60, 16], [14, 16, 18, 19, 19, 19, 19, 19, 18, 16], [15, 16, 18, 19, 19, 20, 19, 19, 18, 16], [14, 16, 18, 19, 19, 19, 19, 19, 18, 16], [14, 16, 80, 80, 19, 19, 19, 100, 100, 16], [13, 15, 80, 80, 18, 18, 18, 100, 100, 15], [11, 13, 15, 16, 16, 16, 16, 16, 15, 13]], dtype=np.uint8) data = 100 - data expected_result = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) for dtype in [np.uint8, np.uint64, np.int8, np.int64]: data = data.astype(dtype) out = extrema.h_minima(data, 40) error = diff(expected_result, out) assert error < eps assert out.dtype == expected_result.dtype def test_extrema_float(self): """specific tests for float type""" data = np.array([[0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14, 0.14, 0.13, 0.11], [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13], [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18, 0.60, 0.60, 0.15], [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19, 0.60, 0.60, 0.16], [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16], [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19, 0.19, 0.18, 0.16], [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16], [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19, 1.0, 1.0, 0.16], [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18, 1.0, 1.0, 0.15], [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13]], dtype=np.float32) inverted_data = 1.0 - data out = extrema.h_maxima(data, 0.003) expected_result = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) error = diff(expected_result, out) assert error < eps out = extrema.h_minima(inverted_data, 0.003) error = diff(expected_result, out) assert error < eps def test_h_maxima_float_image(self): """specific tests for h-maxima float image type""" w = 10 x, y = np.mgrid[0:w, 0:w] data = 20 - 0.2 * ((x - w / 2) ** 2 + (y - w / 2) ** 2) data[2:4, 2:4] = 40 data[2:4, 7:9] = 60 data[7:9, 2:4] = 80 data[7:9, 7:9] = 100 data = data.astype(np.float32) expected_result = np.zeros_like(data) expected_result[(data > 19.9)] = 1.0 for h in [1.0e-12, 1.0e-6, 1.0e-3, 1.0e-2, 1.0e-1, 0.1]: out = extrema.h_maxima(data, h) error = diff(expected_result, out) assert error < eps def test_h_maxima_float_h(self): """specific tests for h-maxima float h parameter""" data = np.array([[0, 0, 0, 0, 0], [0, 3, 3, 3, 0], [0, 3, 4, 3, 0], [0, 3, 3, 3, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) h_vals = np.linspace(1.0, 2.0, 100) failures = 0 for h in h_vals: if h % 1 != 0: msgs = ['possible precision loss converting image'] else: msgs = [] with expected_warnings(msgs): maxima = extrema.h_maxima(data, h) if (maxima[2, 2] == 0): failures += 1 assert (failures == 0) def test_h_maxima_large_h(self): """test that h-maxima works correctly for large h""" data = np.array([[10, 10, 10, 10, 10], [10, 13, 13, 13, 10], [10, 13, 14, 13, 10], [10, 13, 13, 13, 10], [10, 10, 10, 10, 10]], dtype=np.uint8) maxima = extrema.h_maxima(data, 5) assert (np.sum(maxima) == 0) data = np.array([[10, 10, 10, 10, 10], [10, 13, 13, 13, 10], [10, 13, 14, 13, 10], [10, 13, 13, 13, 10], [10, 10, 10, 10, 10]], dtype=np.float32) maxima = extrema.h_maxima(data, 5.0) assert (np.sum(maxima) == 0) def test_h_minima_float_image(self): """specific tests for h-minima float image type""" w = 10 x, y = np.mgrid[0:w, 0:w] data = 180 + 0.2 * ((x - w / 2) ** 2 + (y - w / 2) ** 2) data[2:4, 2:4] = 160 data[2:4, 7:9] = 140 data[7:9, 2:4] = 120 data[7:9, 7:9] = 100 data = data.astype(np.float32) expected_result = np.zeros_like(data) expected_result[(data < 180.1)] = 1.0 for h in [1.0e-12, 1.0e-6, 1.0e-3, 1.0e-2, 1.0e-1, 0.1]: out = extrema.h_minima(data, h) error = diff(expected_result, out) assert error < eps def test_h_minima_float_h(self): """specific tests for h-minima float h parameter""" data = np.array([[4, 4, 4, 4, 4], [4, 1, 1, 1, 4], [4, 1, 0, 1, 4], [4, 1, 1, 1, 4], [4, 4, 4, 4, 4]], dtype=np.uint8) h_vals = np.linspace(1.0, 2.0, 100) failures = 0 for h in h_vals: if h % 1 != 0: msgs = ['possible precision loss converting image'] else: msgs = [] with expected_warnings(msgs): minima = extrema.h_minima(data, h) if (minima[2, 2] == 0): failures += 1 assert (failures == 0) def test_h_minima_large_h(self): """test that h-minima works correctly for large h""" data = np.array([[14, 14, 14, 14, 14], [14, 11, 11, 11, 14], [14, 11, 10, 11, 14], [14, 11, 11, 11, 14], [14, 14, 14, 14, 14]], dtype=np.uint8) maxima = extrema.h_minima(data, 5) assert (np.sum(maxima) == 0) data = np.array([[14, 14, 14, 14, 14], [14, 11, 11, 11, 14], [14, 11, 10, 11, 14], [14, 11, 11, 11, 14], [14, 14, 14, 14, 14]], dtype=np.float32) maxima = extrema.h_minima(data, 5.0) assert (np.sum(maxima) == 0) class TestLocalMaxima(unittest.TestCase): """Some tests for local_minima are included as well.""" supported_dtypes = [ np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, np.float32, np.float64 ] image = np.array( [[1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 2, 0, 0, 3, 3, 0, 0, 4, 0, 2, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 4, 4, 0, 3, 0, 0, 0], [0, 2, 0, 1, 0, 2, 1, 0, 0, 0, 0, 3, 0, 0, 0], [0, 0, 2, 0, 2, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0]], dtype=np.uint8 ) # Connectivity 2, maxima can touch border, returned with default values expected_default = np.array( [[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]], dtype=bool ) # Connectivity 1 (cross), maxima can touch border expected_cross = np.array( [[1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]], dtype=bool ) def test_empty(self): """Test result with empty image.""" result = extrema.local_maxima(np.array([[]]), indices=False) assert result.size == 0 assert result.dtype == bool assert result.shape == (1, 0) result = extrema.local_maxima(np.array([]), indices=True) assert isinstance(result, tuple) assert len(result) == 1 assert result[0].size == 0 assert result[0].dtype == np.intp result = extrema.local_maxima(np.array([[]]), indices=True) assert isinstance(result, tuple) assert len(result) == 2 assert result[0].size == 0 assert result[0].dtype == np.intp assert result[1].size == 0 assert result[1].dtype == np.intp def test_dtypes(self): """Test results with default configuration for all supported dtypes.""" for dtype in self.supported_dtypes: result = extrema.local_maxima(self.image.astype(dtype)) assert result.dtype == bool assert_equal(result, self.expected_default) def test_dtypes_old(self): """ Test results with default configuration and data copied from old unit tests for all supported dtypes. """ data = np.array( [[10, 11, 13, 14, 14, 15, 14, 14, 13, 11], [11, 13, 15, 16, 16, 16, 16, 16, 15, 13], [13, 15, 40, 40, 18, 18, 18, 60, 60, 15], [14, 16, 40, 40, 19, 19, 19, 60, 60, 16], [14, 16, 18, 19, 19, 19, 19, 19, 18, 16], [15, 16, 18, 19, 19, 20, 19, 19, 18, 16], [14, 16, 18, 19, 19, 19, 19, 19, 18, 16], [14, 16, 80, 80, 19, 19, 19, 100, 100, 16], [13, 15, 80, 80, 18, 18, 18, 100, 100, 15], [11, 13, 15, 16, 16, 16, 16, 16, 15, 13]], dtype=np.uint8 ) expected = np.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool ) for dtype in self.supported_dtypes: image = data.astype(dtype) result = extrema.local_maxima(image) assert result.dtype == bool assert_equal(result, expected) def test_connectivity(self): """Test results if footprint is a scalar.""" # Connectivity 1: generates cross shaped footprint result_conn1 = extrema.local_maxima(self.image, connectivity=1) assert result_conn1.dtype == bool assert_equal(result_conn1, self.expected_cross) # Connectivity 2: generates square shaped footprint result_conn2 = extrema.local_maxima(self.image, connectivity=2) assert result_conn2.dtype == bool assert_equal(result_conn2, self.expected_default) # Connectivity 3: generates square shaped footprint result_conn3 = extrema.local_maxima(self.image, connectivity=3) assert result_conn3.dtype == bool assert_equal(result_conn3, self.expected_default) def test_footprint(self): """Test results if footprint is given.""" footprint_cross = np.array( [[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=bool) result_footprint_cross = extrema.local_maxima( self.image, footprint=footprint_cross) assert result_footprint_cross.dtype == bool assert_equal(result_footprint_cross, self.expected_cross) for footprint in [ ((True,) * 3,) * 3, np.ones((3, 3), dtype=np.float64), np.ones((3, 3), dtype=np.uint8), np.ones((3, 3), dtype=bool), ]: # Test different dtypes for footprint which expects a boolean array # but will accept and convert other types if possible result_footprint_square = extrema.local_maxima( self.image, footprint=footprint ) assert result_footprint_square.dtype == bool assert_equal(result_footprint_square, self.expected_default) footprint_x = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]], dtype=bool) expected_footprint_x = np.array( [[1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]], dtype=bool ) result_footprint_x = extrema.local_maxima(self.image, footprint=footprint_x) assert result_footprint_x.dtype == bool assert_equal(result_footprint_x, expected_footprint_x) def test_indices(self): """Test output if indices of peaks are desired.""" # Connectivity 1 expected_conn1 = np.nonzero(self.expected_cross) result_conn1 = extrema.local_maxima(self.image, connectivity=1, indices=True) assert_equal(result_conn1, expected_conn1) # Connectivity 2 expected_conn2 = np.nonzero(self.expected_default) result_conn2 = extrema.local_maxima(self.image, connectivity=2, indices=True) assert_equal(result_conn2, expected_conn2) def test_allow_borders(self): """Test maxima detection at the image border.""" # Use connectivity 1 to allow many maxima, only filtering at border is # of interest result_with_boder = extrema.local_maxima( self.image, connectivity=1, allow_borders=True) assert result_with_boder.dtype == bool assert_equal(result_with_boder, self.expected_cross) expected_without_border = np.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool ) result_without_border = extrema.local_maxima( self.image, connectivity=1, allow_borders=False) assert result_with_boder.dtype == bool assert_equal(result_without_border, expected_without_border) def test_nd(self): """Test one- and three-dimensional case.""" # One-dimension x_1d = np.array([1, 1, 0, 1, 2, 3, 0, 2, 1, 2, 0]) expected_1d = np.array([1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0], dtype=bool) result_1d = extrema.local_maxima(x_1d) assert result_1d.dtype == bool assert_equal(result_1d, expected_1d) # 3-dimensions (adapted from old unit test) x_3d = np.zeros((8, 8, 8), dtype=np.uint8) expected_3d = np.zeros((8, 8, 8), dtype=bool) # first maximum: only one pixel x_3d[1, 1:3, 1:3] = 100 x_3d[2, 2, 2] = 200 x_3d[3, 1:3, 1:3] = 100 expected_3d[2, 2, 2] = 1 # second maximum: three pixels in z-direction x_3d[5:8, 1, 1] = 200 expected_3d[5:8, 1, 1] = 1 # third: two maxima in 0 and 3. x_3d[0, 5:8, 5:8] = 200 x_3d[1, 6, 6] = 100 x_3d[2, 5:7, 5:7] = 200 x_3d[0:3, 5:8, 5:8] += 50 expected_3d[0, 5:8, 5:8] = 1 expected_3d[2, 5:7, 5:7] = 1 # four : one maximum in the corner of the square x_3d[6:8, 6:8, 6:8] = 200 x_3d[7, 7, 7] = 255 expected_3d[7, 7, 7] = 1 result_3d = extrema.local_maxima(x_3d) assert result_3d.dtype == bool assert_equal(result_3d, expected_3d) def test_constant(self): """Test behaviour for 'flat' images.""" const_image = np.full((7, 6), 42, dtype=np.uint8) expected = np.zeros((7, 6), dtype=np.uint8) for dtype in self.supported_dtypes: const_image = const_image.astype(dtype) # test for local maxima result = extrema.local_maxima(const_image) assert result.dtype == bool assert_equal(result, expected) # test for local minima result = extrema.local_minima(const_image) assert result.dtype == bool assert_equal(result, expected) def test_extrema_float(self): """Specific tests for float type.""" # Copied from old unit test for local_maxma image = np.array( [[0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14, 0.14, 0.13, 0.11], [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13], [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18, 0.60, 0.60, 0.15], [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19, 0.60, 0.60, 0.16], [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16], [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19, 0.19, 0.18, 0.16], [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16], [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19, 1.0, 1.0, 0.16], [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18, 1.0, 1.0, 0.15], [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13]], dtype=np.float32 ) inverted_image = 1.0 - image expected_result = np.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool ) # Test for local maxima with automatic step calculation result = extrema.local_maxima(image) assert result.dtype == bool assert_equal(result, expected_result) # Test for local minima with automatic step calculation result = extrema.local_minima(inverted_image) assert result.dtype == bool assert_equal(result, expected_result) def test_exceptions(self): """Test if input validation triggers correct exceptions.""" # Mismatching number of dimensions with raises(ValueError, match="number of dimensions"): extrema.local_maxima( self.image, footprint=np.ones((3, 3, 3), dtype=bool)) with raises(ValueError, match="number of dimensions"): extrema.local_maxima( self.image, footprint=np.ones((3,), dtype=bool)) # All dimensions in footprint must be of size 3 with raises(ValueError, match="dimension size"): extrema.local_maxima( self.image, footprint=np.ones((2, 3), dtype=bool)) with raises(ValueError, match="dimension size"): extrema.local_maxima( self.image, footprint=np.ones((5, 5), dtype=bool)) with raises(TypeError, match="float16 which is not supported"): extrema.local_maxima(np.empty(1, dtype=np.float16)) def test_small_array(self): """Test output for arrays with dimension smaller 3. If any dimension of an array is smaller than 3 and `allow_borders` is false a footprint, which has at least 3 elements in each dimension, can't be applied. This is an implementation detail so `local_maxima` should still return valid output (see gh-3261). If `allow_borders` is true the array is padded internally and there is no problem. """ warning_msg = "maxima can't exist .* any dimension smaller 3 .*" x = np.array([0, 1]) extrema.local_maxima(x, allow_borders=True) # no warning with warns(UserWarning, match=warning_msg): result = extrema.local_maxima(x, allow_borders=False) assert_equal(result, [0, 0]) assert result.dtype == bool x = np.array([[1, 2], [2, 2]]) extrema.local_maxima(x, allow_borders=True, indices=True) # no warning with warns(UserWarning, match=warning_msg): result = extrema.local_maxima(x, allow_borders=False, indices=True) assert_equal(result, np.zeros((2, 0), dtype=np.intp)) assert result[0].dtype == np.intp assert result[1].dtype == np.intp @pytest.mark.parametrize( 'function', ['local_maxima', 'local_minima', 'h_minima', 'h_maxima'] ) def test_selem_kwarg_deprecation(function): img = np.zeros((16, 16)) args = (20,) if function.startswith('h_') else () with expected_warnings(["`selem` is a deprecated argument name"]): getattr(extrema, function)(img, *args, selem=np.ones((3, 3)))