import numpy as np import pytest from numpy.testing import assert_array_equal from scipy.ndimage import correlate from skimage import draw from skimage._shared._warnings import expected_warnings from skimage._shared.testing import fetch from skimage.io import imread from skimage.morphology import medial_axis, skeletonize, thin from skimage.morphology._skeletonize import (_generate_thin_luts, G123_LUT, G123P_LUT) class TestSkeletonize(): def test_skeletonize_no_foreground(self): im = np.zeros((5, 5)) result = skeletonize(im) assert_array_equal(result, np.zeros((5, 5))) def test_skeletonize_wrong_dim1(self): im = np.zeros((5)) with pytest.raises(ValueError): skeletonize(im) def test_skeletonize_wrong_dim2(self): im = np.zeros((5, 5, 5)) with pytest.raises(ValueError): skeletonize(im, method='zhang') def test_skeletonize_not_binary(self): im = np.zeros((5, 5)) im[0, 0] = 1 im[0, 1] = 2 with pytest.raises(ValueError): skeletonize(im) def test_skeletonize_unexpected_value(self): im = np.zeros((5, 5)) im[0, 0] = 2 with pytest.raises(ValueError): skeletonize(im) def test_skeletonize_all_foreground(self): im = np.ones((3, 4)) skeletonize(im) def test_skeletonize_single_point(self): im = np.zeros((5, 5), np.uint8) im[3, 3] = 1 result = skeletonize(im) assert_array_equal(result, im) def test_skeletonize_already_thinned(self): im = np.zeros((5, 5), np.uint8) im[3, 1:-1] = 1 im[2, -1] = 1 im[4, 0] = 1 result = skeletonize(im) assert_array_equal(result, im) def test_skeletonize_output(self): im = imread(fetch("data/bw_text.png"), as_gray=True) # make black the foreground im = (im == 0) result = skeletonize(im) expected = np.load(fetch("data/bw_text_skeleton.npy")) assert_array_equal(result, expected) def test_skeletonize_num_neighbours(self): # an empty image image = np.zeros((300, 300)) # foreground object 1 image[10:-10, 10:100] = 1 image[-100:-10, 10:-10] = 1 image[10:-10, -100:-10] = 1 # foreground object 2 rs, cs = draw.line(250, 150, 10, 280) for i in range(10): image[rs + i, cs] = 1 rs, cs = draw.line(10, 150, 250, 280) for i in range(20): image[rs + i, cs] = 1 # foreground object 3 ir, ic = np.indices(image.shape) circle1 = (ic - 135)**2 + (ir - 150)**2 < 30**2 circle2 = (ic - 135)**2 + (ir - 150)**2 < 20**2 image[circle1] = 1 image[circle2] = 0 result = skeletonize(image) # there should never be a 2x2 block of foreground pixels in a skeleton mask = np.array([[1, 1], [1, 1]], np.uint8) blocks = correlate(result, mask, mode='constant') assert not np.any(blocks == 4) def test_lut_fix(self): im = np.zeros((6, 6), np.uint8) im[1, 2] = 1 im[2, 2] = 1 im[2, 3] = 1 im[3, 3] = 1 im[3, 4] = 1 im[4, 4] = 1 im[4, 5] = 1 result = skeletonize(im) expected = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0]], dtype=np.uint8) assert np.all(result == expected) class TestThin(): @property def input_image(self): """image to test thinning with""" ii = np.array([[0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) return ii def test_zeros(self): assert np.all(thin(np.zeros((10, 10))) == False) def test_iter_1(self): result = thin(self.input_image, 1).astype(np.uint8) expected = np.array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) assert_array_equal(result, expected) def test_max_iter_kwarg_deprecation(self): result1 = thin(self.input_image, max_num_iter=1).astype(np.uint8) with expected_warnings(["`max_iter` is a deprecated argument name"]): result2 = thin(self.input_image, max_iter=1).astype(np.uint8) assert_array_equal(result1, result2) def test_noiter(self): result = thin(self.input_image).astype(np.uint8) expected = np.array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) assert_array_equal(result, expected) def test_baddim(self): for ii in [np.zeros((3)), np.zeros((3, 3, 3))]: with pytest.raises(ValueError): thin(ii) def test_lut_generation(self): g123, g123p = _generate_thin_luts() assert_array_equal(g123, G123_LUT) assert_array_equal(g123p, G123P_LUT) class TestMedialAxis(): def test_00_00_zeros(self): '''Test skeletonize on an array of all zeros''' result = medial_axis(np.zeros((10, 10), bool)) assert np.all(result == False) def test_00_01_zeros_masked(self): '''Test skeletonize on an array that is completely masked''' result = medial_axis(np.zeros((10, 10), bool), np.zeros((10, 10), bool)) assert np.all(result == False) def test_vertical_line(self): '''Test a thick vertical line, issue #3861''' img = np.zeros((9, 9)) img[:, 2] = 1 img[:, 3] = 1 img[:, 4] = 1 expected = np.full(img.shape, False) expected[:, 3] = True result = medial_axis(img) assert_array_equal(result, expected) def test_01_01_rectangle(self): '''Test skeletonize on a rectangle''' image = np.zeros((9, 15), bool) image[1:-1, 1:-1] = True # # The result should be four diagonals from the # corners, meeting in a horizontal line # expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool) result = medial_axis(image) assert np.all(result == expected) result, distance = medial_axis(image, return_distance=True) assert distance.max() == 4 def test_01_02_hole(self): '''Test skeletonize on a rectangle with a hole in the middle''' image = np.zeros((9, 15), bool) image[1:-1, 1:-1] = True image[4, 4:-4] = False expected = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=bool) result = medial_axis(image) assert np.all(result == expected) def test_narrow_image(self): """Test skeletonize on a 1-pixel thin strip""" image = np.zeros((1, 5), bool) image[:, 1:-1] = True result = medial_axis(image) assert np.all(result == image)