# coding: utf-8 """TV-L1 optical flow algorithm implementation. """ from functools import partial from itertools import combinations_with_replacement import numpy as np from scipy import ndimage as ndi from .._shared.filters import gaussian as gaussian_filter from .._shared.utils import _supported_float_type from ..transform import warp from ._optical_flow_utils import coarse_to_fine, get_warp_points def _tvl1(reference_image, moving_image, flow0, attachment, tightness, num_warp, num_iter, tol, prefilter): """TV-L1 solver for optical flow estimation. Parameters ---------- reference_image : ndarray, shape (M, N[, P[, ...]]) The first gray scale image of the sequence. moving_image : ndarray, shape (M, N[, P[, ...]]) The second gray scale image of the sequence. flow0 : ndarray, shape (image0.ndim, M, N[, P[, ...]]) Initialization for the vector field. attachment : float Attachment parameter. The smaller this parameter is, the smoother is the solutions. tightness : float Tightness parameter. It should have a small value in order to maintain attachement and regularization parts in correspondence. num_warp : int Number of times image1 is warped. num_iter : int Number of fixed point iteration. tol : float Tolerance used as stopping criterion based on the L² distance between two consecutive values of (u, v). prefilter : bool Whether to prefilter the estimated optical flow before each image warp. Returns ------- flow : ndarray, shape ((image0.ndim, M, N[, P[, ...]]) The estimated optical flow components for each axis. """ dtype = reference_image.dtype grid = np.meshgrid(*[np.arange(n, dtype=dtype) for n in reference_image.shape], indexing='ij', sparse=True) dt = 0.5 / reference_image.ndim reg_num_iter = 2 f0 = attachment * tightness f1 = dt / tightness tol *= reference_image.size flow_current = flow_previous = flow0 g = np.zeros((reference_image.ndim,) + reference_image.shape, dtype=dtype) proj = np.zeros((reference_image.ndim, reference_image.ndim,) + reference_image.shape, dtype=dtype) s_g = [slice(None), ] * g.ndim s_p = [slice(None), ] * proj.ndim s_d = [slice(None), ] * (proj.ndim-2) for _ in range(num_warp): if prefilter: flow_current = ndi.median_filter(flow_current, [1] + reference_image.ndim * [3]) image1_warp = warp(moving_image, get_warp_points(grid, flow_current), mode='edge') grad = np.array(np.gradient(image1_warp)) NI = (grad*grad).sum(0) NI[NI == 0] = 1 rho_0 = image1_warp - reference_image - (grad * flow_current).sum(0) for _ in range(num_iter): # Data term rho = rho_0 + (grad*flow_current).sum(0) idx = abs(rho) <= f0 * NI flow_auxiliary = flow_current flow_auxiliary[:, idx] -= rho[idx]*grad[:, idx]/NI[idx] idx = ~idx srho = f0 * np.sign(rho[idx]) flow_auxiliary[:, idx] -= srho*grad[:, idx] # Regularization term flow_current = flow_auxiliary.copy() for idx in range(reference_image.ndim): s_p[0] = idx for _ in range(reg_num_iter): for ax in range(reference_image.ndim): s_g[0] = ax s_g[ax+1] = slice(0, -1) g[tuple(s_g)] = np.diff(flow_current[idx], axis=ax) s_g[ax+1] = slice(None) norm = np.sqrt((g ** 2).sum(0))[np.newaxis, ...] norm *= f1 norm += 1. proj[idx] -= dt * g proj[idx] /= norm # d will be the (negative) divergence of proj[idx] d = -proj[idx].sum(0) for ax in range(reference_image.ndim): s_p[1] = ax s_p[ax+2] = slice(0, -1) s_d[ax] = slice(1, None) d[tuple(s_d)] += proj[tuple(s_p)] s_p[ax+2] = slice(None) s_d[ax] = slice(None) flow_current[idx] = flow_auxiliary[idx] + d flow_previous -= flow_current # The difference as stopping criteria if (flow_previous*flow_previous).sum() < tol: break flow_previous = flow_current return flow_current def optical_flow_tvl1(reference_image, moving_image, *, attachment=15, tightness=0.3, num_warp=5, num_iter=10, tol=1e-4, prefilter=False, dtype=np.float32): r"""Coarse to fine optical flow estimator. The TV-L1 solver is applied at each level of the image pyramid. TV-L1 is a popular algorithm for optical flow estimation introduced by Zack et al. [1]_, improved in [2]_ and detailed in [3]_. Parameters ---------- reference_image : ndarray, shape (M, N[, P[, ...]]) The first gray scale image of the sequence. moving_image : ndarray, shape (M, N[, P[, ...]]) The second gray scale image of the sequence. attachment : float, optional Attachment parameter (:math:`\lambda` in [1]_). The smaller this parameter is, the smoother the returned result will be. tightness : float, optional Tightness parameter (:math:`\tau` in [1]_). It should have a small value in order to maintain attachement and regularization parts in correspondence. num_warp : int, optional Number of times image1 is warped. num_iter : int, optional Number of fixed point iteration. tol : float, optional Tolerance used as stopping criterion based on the L² distance between two consecutive values of (u, v). prefilter : bool, optional Whether to prefilter the estimated optical flow before each image warp. When True, a median filter with window size 3 along each axis is applied. This helps to remove potential outliers. dtype : dtype, optional Output data type: must be floating point. Single precision provides good results and saves memory usage and computation time compared to double precision. Returns ------- flow : ndarray, shape ((image0.ndim, M, N[, P[, ...]]) The estimated optical flow components for each axis. Notes ----- Color images are not supported. References ---------- .. [1] Zach, C., Pock, T., & Bischof, H. (2007, September). A duality based approach for realtime TV-L 1 optical flow. In Joint pattern recognition symposium (pp. 214-223). Springer, Berlin, Heidelberg. :DOI:`10.1007/978-3-540-74936-3_22` .. [2] Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers, D. (2009). An improved algorithm for TV-L 1 optical flow. In Statistical and geometrical approaches to visual motion analysis (pp. 23-45). Springer, Berlin, Heidelberg. :DOI:`10.1007/978-3-642-03061-1_2` .. [3] Pérez, J. S., Meinhardt-Llopis, E., & Facciolo, G. (2013). TV-L1 optical flow estimation. Image Processing On Line, 2013, 137-150. :DOI:`10.5201/ipol.2013.26` Examples -------- >>> from skimage.color import rgb2gray >>> from skimage.data import stereo_motorcycle >>> from skimage.registration import optical_flow_tvl1 >>> image0, image1, disp = stereo_motorcycle() >>> # --- Convert the images to gray level: color is not supported. >>> image0 = rgb2gray(image0) >>> image1 = rgb2gray(image1) >>> flow = optical_flow_tvl1(image1, image0) """ solver = partial(_tvl1, attachment=attachment, tightness=tightness, num_warp=num_warp, num_iter=num_iter, tol=tol, prefilter=prefilter) if np.dtype(dtype) != _supported_float_type(dtype): msg = f"dtype={dtype} is not supported. Try 'float32' or 'float64.'" raise ValueError(msg) return coarse_to_fine(reference_image, moving_image, solver, dtype=dtype) def _ilk(reference_image, moving_image, flow0, radius, num_warp, gaussian, prefilter): """Iterative Lucas-Kanade (iLK) solver for optical flow estimation. Parameters ---------- reference_image : ndarray, shape (M, N[, P[, ...]]) The first gray scale image of the sequence. moving_image : ndarray, shape (M, N[, P[, ...]]) The second gray scale image of the sequence. flow0 : ndarray, shape (reference_image.ndim, M, N[, P[, ...]]) Initialization for the vector field. radius : int Radius of the window considered around each pixel. num_warp : int Number of times moving_image is warped. gaussian : bool if True, a gaussian kernel is used for the local integration. Otherwise, a uniform kernel is used. prefilter : bool Whether to prefilter the estimated optical flow before each image warp. This helps to remove potential outliers. Returns ------- flow : ndarray, shape ((reference_image.ndim, M, N[, P[, ...]]) The estimated optical flow components for each axis. """ dtype = reference_image.dtype ndim = reference_image.ndim size = 2 * radius + 1 if gaussian: sigma = ndim * (size / 4, ) filter_func = partial(gaussian_filter, sigma=sigma, mode='mirror') else: filter_func = partial(ndi.uniform_filter, size=ndim * (size, ), mode='mirror') flow = flow0 # For each pixel location (i, j), the optical flow X = flow[:, i, j] # is the solution of the ndim x ndim linear system # A[i, j] * X = b[i, j] A = np.zeros(reference_image.shape + (ndim, ndim), dtype=dtype) b = np.zeros(reference_image.shape + (ndim, ), dtype=dtype) grid = np.meshgrid(*[np.arange(n, dtype=dtype) for n in reference_image.shape], indexing='ij', sparse=True) for _ in range(num_warp): if prefilter: flow = ndi.median_filter(flow, (1, ) + ndim * (3, )) moving_image_warp = warp(moving_image, get_warp_points(grid, flow), mode='edge') grad = np.stack(np.gradient(moving_image_warp), axis=0) error_image = ((grad * flow).sum(axis=0) + reference_image - moving_image_warp) # Local linear systems creation for i, j in combinations_with_replacement(range(ndim), 2): A[..., i, j] = A[..., j, i] = filter_func(grad[i] * grad[j]) for i in range(ndim): b[..., i] = filter_func(grad[i] * error_image) # Don't consider badly conditioned linear systems idx = abs(np.linalg.det(A)) < 1e-14 A[idx] = np.eye(ndim, dtype=dtype) b[idx] = 0 # Solve the local linear systems flow = np.moveaxis(np.linalg.solve(A, b), ndim, 0) return flow def optical_flow_ilk(reference_image, moving_image, *, radius=7, num_warp=10, gaussian=False, prefilter=False, dtype=np.float32): """Coarse to fine optical flow estimator. The iterative Lucas-Kanade (iLK) solver is applied at each level of the image pyramid. iLK [1]_ is a fast and robust alternative to TVL1 algorithm although less accurate for rendering flat surfaces and object boundaries (see [2]_). Parameters ---------- reference_image : ndarray, shape (M, N[, P[, ...]]) The first gray scale image of the sequence. moving_image : ndarray, shape (M, N[, P[, ...]]) The second gray scale image of the sequence. radius : int, optional Radius of the window considered around each pixel. num_warp : int, optional Number of times moving_image is warped. gaussian : bool, optional If True, a Gaussian kernel is used for the local integration. Otherwise, a uniform kernel is used. prefilter : bool, optional Whether to prefilter the estimated optical flow before each image warp. When True, a median filter with window size 3 along each axis is applied. This helps to remove potential outliers. dtype : dtype, optional Output data type: must be floating point. Single precision provides good results and saves memory usage and computation time compared to double precision. Returns ------- flow : ndarray, shape ((reference_image.ndim, M, N[, P[, ...]]) The estimated optical flow components for each axis. Notes ----- - The implemented algorithm is described in **Table2** of [1]_. - Color images are not supported. References ---------- .. [1] Le Besnerais, G., & Champagnat, F. (2005, September). Dense optical flow by iterative local window registration. In IEEE International Conference on Image Processing 2005 (Vol. 1, pp. I-137). IEEE. :DOI:`10.1109/ICIP.2005.1529706` .. [2] Plyer, A., Le Besnerais, G., & Champagnat, F. (2016). Massively parallel Lucas Kanade optical flow for real-time video processing applications. Journal of Real-Time Image Processing, 11(4), 713-730. :DOI:`10.1007/s11554-014-0423-0` Examples -------- >>> from skimage.color import rgb2gray >>> from skimage.data import stereo_motorcycle >>> from skimage.registration import optical_flow_ilk >>> reference_image, moving_image, disp = stereo_motorcycle() >>> # --- Convert the images to gray level: color is not supported. >>> reference_image = rgb2gray(reference_image) >>> moving_image = rgb2gray(moving_image) >>> flow = optical_flow_ilk(moving_image, reference_image) """ solver = partial(_ilk, radius=radius, num_warp=num_warp, gaussian=gaussian, prefilter=prefilter) if np.dtype(dtype) != _supported_float_type(dtype): msg = f"dtype={dtype} is not supported. Try 'float32' or 'float64.'" raise ValueError(msg) return coarse_to_fine(reference_image, moving_image, solver, dtype=dtype)