# coding: utf-8 """Common tools to optical flow algorithms. """ import numpy as np from scipy import ndimage as ndi from ..transform import pyramid_reduce from ..util.dtype import _convert def get_warp_points(grid, flow): """Compute warp point coordinates. Parameters ---------- grid : iterable The sparse grid to be warped (optained using ``np.meshgrid(..., sparse=True)).``) flow : ndarray The warping motion field. Returns ------- out : ndarray The warp point coordinates. """ out = flow.copy() for idx, g in enumerate(grid): out[idx, ...] += g return out def resize_flow(flow, shape): """Rescale the values of the vector field (u, v) to the desired shape. The values of the output vector field are scaled to the new resolution. Parameters ---------- flow : ndarray The motion field to be processed. shape : iterable Couple of integers representing the output shape. Returns ------- rflow : ndarray The resized and rescaled motion field. """ scale = [n / o for n, o in zip(shape, flow.shape[1:])] scale_factor = np.array(scale, dtype=flow.dtype) for _ in shape: scale_factor = scale_factor[..., np.newaxis] rflow = scale_factor*ndi.zoom(flow, [1] + scale, order=0, mode='nearest', prefilter=False) return rflow def get_pyramid(I, downscale=2.0, nlevel=10, min_size=16): """Construct image pyramid. Parameters ---------- I : ndarray The image to be preprocessed (Gray scale or RGB). downscale : float The pyramid downscale factor. nlevel : int The maximum number of pyramid levels. min_size : int The minimum size for any dimension of the pyramid levels. Returns ------- pyramid : list[ndarray] The coarse to fine images pyramid. """ pyramid = [I] size = min(I.shape) count = 1 while (count < nlevel) and (size > downscale * min_size): J = pyramid_reduce(pyramid[-1], downscale, channel_axis=None) pyramid.append(J) size = min(J.shape) count += 1 return pyramid[::-1] def coarse_to_fine(I0, I1, solver, downscale=2, nlevel=10, min_size=16, dtype=np.float32): """Generic coarse to fine solver. Parameters ---------- I0 : ndarray The first gray scale image of the sequence. I1 : ndarray The second gray scale image of the sequence. solver : callable The solver applyed at each pyramid level. downscale : float The pyramid downscale factor. nlevel : int The maximum number of pyramid levels. min_size : int The minimum size for any dimension of the pyramid levels. dtype : dtype Output data type. Returns ------- flow : ndarray The estimated optical flow components for each axis. """ if I0.shape != I1.shape: raise ValueError("Input images should have the same shape") if np.dtype(dtype).char not in 'efdg': raise ValueError("Only floating point data type are valid" " for optical flow") pyramid = list(zip(get_pyramid(_convert(I0, dtype), downscale, nlevel, min_size), get_pyramid(_convert(I1, dtype), downscale, nlevel, min_size))) # Initialization to 0 at coarsest level. flow = np.zeros((pyramid[0][0].ndim, ) + pyramid[0][0].shape, dtype=dtype) flow = solver(pyramid[0][0], pyramid[0][1], flow) for J0, J1 in pyramid[1:]: flow = solver(J0, J1, resize_flow(flow, J0.shape)) return flow