import numpy as np from .._shared.utils import _supported_float_type from ._rolling_ball_cy import apply_kernel, apply_kernel_nan def rolling_ball(image, *, radius=100, kernel=None, nansafe=False, num_threads=None): """Estimate background intensity by rolling/translating a kernel. This rolling ball algorithm estimates background intensity for a ndimage in case of uneven exposure. It is a generalization of the frequently used rolling ball algorithm [1]_. Parameters ---------- image : ndarray The image to be filtered. radius : int, optional Radius of a ball shaped kernel to be rolled/translated in the image. Used if ``kernel = None``. kernel : ndarray, optional The kernel to be rolled/translated in the image. It must have the same number of dimensions as ``image``. Kernel is filled with the intensity of the kernel at that position. nansafe: bool, optional If ``False`` (default) assumes that none of the values in ``image`` are ``np.nan``, and uses a faster implementation. num_threads: int, optional The maximum number of threads to use. If ``None`` use the OpenMP default value; typically equal to the maximum number of virtual cores. Note: This is an upper limit to the number of threads. The exact number is determined by the system's OpenMP library. Returns ------- background : ndarray The estimated background of the image. Notes ----- For the pixel that has its background intensity estimated (without loss of generality at ``center``) the rolling ball method centers ``kernel`` under it and raises the kernel until the surface touches the image umbra at some ``pos=(y,x)``. The background intensity is then estimated using the image intensity at that position (``image[pos]``) plus the difference of ``kernel[center] - kernel[pos]``. This algorithm assumes that dark pixels correspond to the background. If you have a bright background, invert the image before passing it to the function, e.g., using `utils.invert`. See the gallery example for details. This algorithm is sensitive to noise (in particular salt-and-pepper noise). If this is a problem in your image, you can apply mild gaussian smoothing before passing the image to this function. References ---------- .. [1] Sternberg, Stanley R. "Biomedical image processing." Computer 1 (1983): 22-34. :DOI:`10.1109/MC.1983.1654163` Examples -------- >>> import numpy as np >>> from skimage import data >>> from skimage.restoration import rolling_ball >>> image = data.coins() >>> background = rolling_ball(data.coins()) >>> filtered_image = image - background >>> import numpy as np >>> from skimage import data >>> from skimage.restoration import rolling_ball, ellipsoid_kernel >>> image = data.coins() >>> kernel = ellipsoid_kernel((101, 101), 75) >>> background = rolling_ball(data.coins(), kernel=kernel) >>> filtered_image = image - background """ image = np.asarray(image) float_type = _supported_float_type(image.dtype) img = image.astype(float_type, copy=False) if num_threads is None: num_threads = 0 if kernel is None: kernel = ball_kernel(radius, image.ndim) kernel = kernel.astype(float_type) kernel_shape = np.asarray(kernel.shape) kernel_center = (kernel_shape // 2) center_intensity = kernel[tuple(kernel_center)] intensity_difference = center_intensity - kernel intensity_difference[kernel == np.Inf] = np.Inf intensity_difference = intensity_difference.astype(img.dtype) intensity_difference = intensity_difference.reshape(-1) img = np.pad(img, kernel_center[:, np.newaxis], constant_values=np.Inf, mode="constant") func = apply_kernel_nan if nansafe else apply_kernel background = func( img.reshape(-1), intensity_difference, np.zeros_like(image, dtype=img.dtype).reshape(-1), np.array(image.shape, dtype=np.intp), np.array(img.shape, dtype=np.intp), kernel_shape.astype(np.intp), num_threads ) background = background.astype(image.dtype, copy=False) return background def ball_kernel(radius, ndim): """Create a ball kernel for restoration.rolling_ball. Parameters ---------- radius : int Radius of the ball. ndim : int Number of dimensions of the ball. ``ndim`` should match the dimensionality of the image the kernel will be applied to. Returns ------- kernel : ndarray The kernel containing the surface intensity of the top half of the ellipsoid. See Also -------- rolling_ball """ kernel_coords = np.stack( np.meshgrid( *[np.arange(-x, x + 1) for x in [np.ceil(radius)] * ndim], indexing='ij' ), axis=-1 ) sum_of_squares = np.sum(kernel_coords ** 2, axis=-1) distance_from_center = np.sqrt(sum_of_squares) kernel = np.sqrt(np.clip(radius ** 2 - sum_of_squares, 0, None)) kernel[distance_from_center > radius] = np.Inf return kernel def ellipsoid_kernel(shape, intensity): """Create an ellipoid kernel for restoration.rolling_ball. Parameters ---------- shape : arraylike Length of the principal axis of the ellipsoid (excluding the intensity axis). The kernel needs to have the same dimensionality as the image it will be applied to. intensity : int Length of the intensity axis of the ellipsoid. Returns ------- kernel : ndarray The kernel containing the surface intensity of the top half of the ellipsoid. See Also -------- rolling_ball """ shape = np.asarray(shape) semi_axis = np.clip(shape // 2, 1, None) kernel_coords = np.stack( np.meshgrid( *[np.arange(-x, x + 1) for x in semi_axis], indexing='ij' ), axis=-1) intensity_scaling = 1 - np.sum((kernel_coords / semi_axis) ** 2, axis=-1) kernel = intensity * np.sqrt(np.clip(intensity_scaling, 0, None)) kernel[intensity_scaling < 0] = np.Inf return kernel