r"""Function of unitary fourier transform (uft) and utilities This module implements the unitary fourier transform, also known as the ortho-normal transform. It is especially useful for convolution [1], as it respects the Parseval equality. The value of the null frequency is equal to .. math:: \frac{1}{\sqrt{n}} \sum_i x_i so the Fourier transform has the same energy as the original image (see ``image_quad_norm`` function). The transform is applied from the last axis for performance (assuming a C-order array input). References ---------- .. [1] B. R. Hunt "A matrix theory proof of the discrete convolution theorem", IEEE Trans. on Audio and Electroacoustics, vol. au-19, no. 4, pp. 285-288, dec. 1971 """ import numpy as np import scipy.fft as fft from .._shared.utils import _supported_float_type def ufftn(inarray, dim=None): """N-dimensional unitary Fourier transform. Parameters ---------- inarray : ndarray The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. Returns ------- outarray : ndarray (same shape than inarray) The unitary N-D Fourier transform of ``inarray``. Examples -------- >>> input = np.ones((3, 3, 3)) >>> output = ufftn(input) >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0]) True >>> output.shape (3, 3, 3) """ if dim is None: dim = inarray.ndim outarray = fft.fftn(inarray, axes=range(-dim, 0), norm='ortho') return outarray def uifftn(inarray, dim=None): """N-dimensional unitary inverse Fourier transform. Parameters ---------- inarray : ndarray The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. Returns ------- outarray : ndarray (same shape than inarray) The unitary inverse N-D Fourier transform of ``inarray``. Examples -------- >>> input = np.ones((3, 3, 3)) >>> output = uifftn(input) >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0]) True >>> output.shape (3, 3, 3) """ if dim is None: dim = inarray.ndim outarray = fft.ifftn(inarray, axes=range(-dim, 0), norm='ortho') return outarray def urfftn(inarray, dim=None): """N-dimensional real unitary Fourier transform. This transform considers the Hermitian property of the transform on real-valued input. Parameters ---------- inarray : ndarray, shape (M, N, ..., P) The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. Returns ------- outarray : ndarray, shape (M, N, ..., P / 2 + 1) The unitary N-D real Fourier transform of ``inarray``. Notes ----- The ``urfft`` functions assume an input array of real values. Consequently, the output has a Hermitian property and redundant values are not computed or returned. Examples -------- >>> input = np.ones((5, 5, 5)) >>> output = urfftn(input) >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0]) True >>> output.shape (5, 5, 3) """ if dim is None: dim = inarray.ndim outarray = fft.rfftn(inarray, axes=range(-dim, 0), norm='ortho') return outarray def uirfftn(inarray, dim=None, shape=None): """N-dimensional inverse real unitary Fourier transform. This transform considers the Hermitian property of the transform from complex to real input. Parameters ---------- inarray : ndarray The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. shape : tuple of int, optional The shape of the output. The shape of ``rfft`` is ambiguous in case of odd-valued input shape. In this case, this parameter should be provided. See ``np.fft.irfftn``. Returns ------- outarray : ndarray The unitary N-D inverse real Fourier transform of ``inarray``. Notes ----- The ``uirfft`` function assumes that the output array is real-valued. Consequently, the input is assumed to have a Hermitian property and redundant values are implicit. Examples -------- >>> input = np.ones((5, 5, 5)) >>> output = uirfftn(urfftn(input), shape=input.shape) >>> np.allclose(input, output) True >>> output.shape (5, 5, 5) """ if dim is None: dim = inarray.ndim outarray = fft.irfftn(inarray, shape, axes=range(-dim, 0), norm='ortho') return outarray def ufft2(inarray): """2-dimensional unitary Fourier transform. Compute the Fourier transform on the last 2 axes. Parameters ---------- inarray : ndarray The array to transform. Returns ------- outarray : ndarray (same shape as inarray) The unitary 2-D Fourier transform of ``inarray``. See Also -------- uifft2, ufftn, urfftn Examples -------- >>> input = np.ones((10, 128, 128)) >>> output = ufft2(input) >>> np.allclose(np.sum(input[1, ...]) / np.sqrt(input[1, ...].size), ... output[1, 0, 0]) True >>> output.shape (10, 128, 128) """ return ufftn(inarray, 2) def uifft2(inarray): """2-dimensional inverse unitary Fourier transform. Compute the inverse Fourier transform on the last 2 axes. Parameters ---------- inarray : ndarray The array to transform. Returns ------- outarray : ndarray (same shape as inarray) The unitary 2-D inverse Fourier transform of ``inarray``. See Also -------- uifft2, uifftn, uirfftn Examples -------- >>> input = np.ones((10, 128, 128)) >>> output = uifft2(input) >>> np.allclose(np.sum(input[1, ...]) / np.sqrt(input[1, ...].size), ... output[0, 0, 0]) True >>> output.shape (10, 128, 128) """ return uifftn(inarray, 2) def urfft2(inarray): """2-dimensional real unitary Fourier transform Compute the real Fourier transform on the last 2 axes. This transform considers the Hermitian property of the transform from complex to real-valued input. Parameters ---------- inarray : ndarray, shape (M, N, ..., P) The array to transform. Returns ------- outarray : ndarray, shape (M, N, ..., 2 * (P - 1)) The unitary 2-D real Fourier transform of ``inarray``. See Also -------- ufft2, ufftn, urfftn Examples -------- >>> input = np.ones((10, 128, 128)) >>> output = urfft2(input) >>> np.allclose(np.sum(input[1,...]) / np.sqrt(input[1,...].size), ... output[1, 0, 0]) True >>> output.shape (10, 128, 65) """ return urfftn(inarray, 2) def uirfft2(inarray, shape=None): """2-dimensional inverse real unitary Fourier transform. Compute the real inverse Fourier transform on the last 2 axes. This transform considers the Hermitian property of the transform from complex to real-valued input. Parameters ---------- inarray : ndarray, shape (M, N, ..., P) The array to transform. shape : tuple of int, optional The shape of the output. The shape of ``rfft`` is ambiguous in case of odd-valued input shape. In this case, this parameter should be provided. See ``np.fft.irfftn``. Returns ------- outarray : ndarray, shape (M, N, ..., 2 * (P - 1)) The unitary 2-D inverse real Fourier transform of ``inarray``. See Also -------- urfft2, uifftn, uirfftn Examples -------- >>> input = np.ones((10, 128, 128)) >>> output = uirfftn(urfftn(input), shape=input.shape) >>> np.allclose(input, output) True >>> output.shape (10, 128, 128) """ return uirfftn(inarray, 2, shape=shape) def image_quad_norm(inarray): """Return the quadratic norm of images in Fourier space. This function detects whether the input image satisfies the Hermitian property. Parameters ---------- inarray : ndarray Input image. The image data should reside in the final two axes. Returns ------- norm : float The quadratic norm of ``inarray``. Examples -------- >>> input = np.ones((5, 5)) >>> image_quad_norm(ufft2(input)) == np.sum(np.abs(input)**2) True >>> image_quad_norm(ufft2(input)) == image_quad_norm(urfft2(input)) True """ # If there is a Hermitian symmetry if inarray.shape[-1] != inarray.shape[-2]: return (2 * np.sum(np.sum(np.abs(inarray) ** 2, axis=-1), axis=-1) - np.sum(np.abs(inarray[..., 0]) ** 2, axis=-1)) else: return np.sum(np.sum(np.abs(inarray) ** 2, axis=-1), axis=-1) def ir2tf(imp_resp, shape, dim=None, is_real=True): """Compute the transfer function of an impulse response (IR). This function makes the necessary correct zero-padding, zero convention, correct fft2, etc... to compute the transfer function of IR. To use with unitary Fourier transform for the signal (ufftn or equivalent). Parameters ---------- imp_resp : ndarray The impulse responses. shape : tuple of int A tuple of integer corresponding to the target shape of the transfer function. dim : int, optional The last axis along which to compute the transform. All axes by default. is_real : boolean, optional If True (default), imp_resp is supposed real and the Hermitian property is used with rfftn Fourier transform. Returns ------- y : complex ndarray The transfer function of shape ``shape``. See Also -------- ufftn, uifftn, urfftn, uirfftn Examples -------- >>> np.all(np.array([[4, 0], [0, 0]]) == ir2tf(np.ones((2, 2)), (2, 2))) True >>> ir2tf(np.ones((2, 2)), (512, 512)).shape == (512, 257) True >>> ir2tf(np.ones((2, 2)), (512, 512), is_real=False).shape == (512, 512) True Notes ----- The input array can be composed of multiple-dimensional IR with an arbitrary number of IR. The individual IR must be accessed through the first axes. The last ``dim`` axes contain the space definition. """ if not dim: dim = imp_resp.ndim # Zero padding and fill irpadded_dtype = _supported_float_type(imp_resp) irpadded = np.zeros(shape, dtype=irpadded_dtype) irpadded[tuple([slice(0, s) for s in imp_resp.shape])] = imp_resp # Roll for zero convention of the fft to avoid the phase # problem. Work with odd and even size. for axis, axis_size in enumerate(imp_resp.shape): if axis >= imp_resp.ndim - dim: irpadded = np.roll(irpadded, shift=-int(np.floor(axis_size / 2)), axis=axis) func = fft.rfftn if is_real else fft.fftn out = func(irpadded, axes=(range(-dim, 0))) # TODO: remove .astype call onces SciPy >= 1.4 is required cplx_dtype = np.promote_types(irpadded_dtype, np.complex64) return out.astype(cplx_dtype, copy=False) def laplacian(ndim, shape, is_real=True): """Return the transfer function of the Laplacian. Laplacian is the second order difference, on row and column. Parameters ---------- ndim : int The dimension of the Laplacian. shape : tuple The support on which to compute the transfer function. is_real : boolean, optional If True (default), imp_resp is assumed to be real-valued and the Hermitian property is used with rfftn Fourier transform to return the transfer function. Returns ------- tf : array_like, complex The transfer function. impr : array_like, real The Laplacian. Examples -------- >>> tf, ir = laplacian(2, (32, 32)) >>> np.all(ir == np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]])) True >>> np.all(tf == ir2tf(ir, (32, 32))) True """ impr = np.zeros([3] * ndim) for dim in range(ndim): idx = tuple([slice(1, 2)] * dim + [slice(None)] + [slice(1, 2)] * (ndim - dim - 1)) impr[idx] = np.array([-1.0, 0.0, -1.0]).reshape([-1 if i == dim else 1 for i in range(ndim)]) impr[(slice(1, 2), ) * ndim] = 2.0 * ndim return ir2tf(impr, shape, is_real=is_real), impr