import numpy as np from .._shared.filters import gaussian from .._shared.utils import _supported_float_type from ..color import rgb2lab from ..util import img_as_float from ._quickshift_cy import _quickshift_cython def quickshift(image, ratio=1.0, kernel_size=5, max_dist=10, return_tree=False, sigma=0, convert2lab=True, random_seed=42, *, channel_axis=-1): """Segments image using quickshift clustering in Color-(x,y) space. Produces an oversegmentation of the image using the quickshift mode-seeking algorithm. Parameters ---------- image : (width, height, channels) ndarray Input image. The axis corresponding to color channels can be specified via the `channel_axis` argument. ratio : float, optional, between 0 and 1 Balances color-space proximity and image-space proximity. Higher values give more weight to color-space. kernel_size : float, optional Width of Gaussian kernel used in smoothing the sample density. Higher means fewer clusters. max_dist : float, optional Cut-off point for data distances. Higher means fewer clusters. return_tree : bool, optional Whether to return the full segmentation hierarchy tree and distances. sigma : float, optional Width for Gaussian smoothing as preprocessing. Zero means no smoothing. convert2lab : bool, optional Whether the input should be converted to Lab colorspace prior to segmentation. For this purpose, the input is assumed to be RGB. random_seed : int, optional Random seed used for breaking ties. channel_axis : int, optional The axis of `image` corresponding to color channels. Defaults to the last axis. Returns ------- segment_mask : (width, height) ndarray Integer mask indicating segment labels. Notes ----- The authors advocate to convert the image to Lab color space prior to segmentation, though this is not strictly necessary. For this to work, the image must be given in RGB format. References ---------- .. [1] Quick shift and kernel methods for mode seeking, Vedaldi, A. and Soatto, S. European Conference on Computer Vision, 2008 """ image = img_as_float(np.atleast_3d(image)) float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) if image.ndim > 3: raise ValueError("only 2D color images are supported") # move channels to last position as expected by the Cython code image = np.moveaxis(image, source=channel_axis, destination=-1) if convert2lab: if image.shape[-1] != 3: ValueError("Only RGB images can be converted to Lab space.") image = rgb2lab(image) if kernel_size < 1: raise ValueError("`kernel_size` should be >= 1.") image = gaussian(image, [sigma, sigma, 0], mode='reflect', channel_axis=-1) image = np.ascontiguousarray(image * ratio) segment_mask = _quickshift_cython( image, kernel_size=kernel_size, max_dist=max_dist, return_tree=return_tree, random_seed=random_seed) return segment_mask