import numpy as np from scipy import ndimage as ndi from .._shared.utils import _supported_float_type from ..morphology import dilation, erosion, square from ..util import img_as_float, view_as_windows from ..color import gray2rgb def _find_boundaries_subpixel(label_img): """See ``find_boundaries(..., mode='subpixel')``. Notes ----- This function puts in an empty row and column between each *actual* row and column of the image, for a corresponding shape of ``2s - 1`` for every image dimension of size ``s``. These "interstitial" rows and columns are filled as ``True`` if they separate two labels in `label_img`, ``False`` otherwise. I used ``view_as_windows`` to get the neighborhood of each pixel. Then I check whether there are two labels or more in that neighborhood. """ ndim = label_img.ndim max_label = np.iinfo(label_img.dtype).max label_img_expanded = np.zeros([(2 * s - 1) for s in label_img.shape], label_img.dtype) pixels = (slice(None, None, 2), ) * ndim label_img_expanded[pixels] = label_img edges = np.ones(label_img_expanded.shape, dtype=bool) edges[pixels] = False label_img_expanded[edges] = max_label windows = view_as_windows(np.pad(label_img_expanded, 1, mode='edge'), (3,) * ndim) boundaries = np.zeros_like(edges) for index in np.ndindex(label_img_expanded.shape): if edges[index]: values = np.unique(windows[index].ravel()) if len(values) > 2: # single value and max_label boundaries[index] = True return boundaries def find_boundaries(label_img, connectivity=1, mode='thick', background=0): """Return bool array where boundaries between labeled regions are True. Parameters ---------- label_img : array of int or bool An array in which different regions are labeled with either different integers or boolean values. connectivity : int in {1, ..., `label_img.ndim`}, optional A pixel is considered a boundary pixel if any of its neighbors has a different label. `connectivity` controls which pixels are considered neighbors. A connectivity of 1 (default) means pixels sharing an edge (in 2D) or a face (in 3D) will be considered neighbors. A connectivity of `label_img.ndim` means pixels sharing a corner will be considered neighbors. mode : string in {'thick', 'inner', 'outer', 'subpixel'} How to mark the boundaries: - thick: any pixel not completely surrounded by pixels of the same label (defined by `connectivity`) is marked as a boundary. This results in boundaries that are 2 pixels thick. - inner: outline the pixels *just inside* of objects, leaving background pixels untouched. - outer: outline pixels in the background around object boundaries. When two objects touch, their boundary is also marked. - subpixel: return a doubled image, with pixels *between* the original pixels marked as boundary where appropriate. background : int, optional For modes 'inner' and 'outer', a definition of a background label is required. See `mode` for descriptions of these two. Returns ------- boundaries : array of bool, same shape as `label_img` A bool image where ``True`` represents a boundary pixel. For `mode` equal to 'subpixel', ``boundaries.shape[i]`` is equal to ``2 * label_img.shape[i] - 1`` for all ``i`` (a pixel is inserted in between all other pairs of pixels). Examples -------- >>> labels = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 5, 5, 5, 0, 0], ... [0, 0, 1, 1, 1, 5, 5, 5, 0, 0], ... [0, 0, 1, 1, 1, 5, 5, 5, 0, 0], ... [0, 0, 1, 1, 1, 5, 5, 5, 0, 0], ... [0, 0, 0, 0, 0, 5, 5, 5, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) >>> find_boundaries(labels, mode='thick').astype(np.uint8) array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0, 1, 1, 0], [0, 1, 1, 0, 1, 1, 0, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> find_boundaries(labels, mode='inner').astype(np.uint8) array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 1, 0, 1, 0, 0], [0, 0, 1, 1, 1, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> find_boundaries(labels, mode='outer').astype(np.uint8) array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 1, 0, 0, 1, 0], [0, 0, 1, 1, 1, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> labels_small = labels[::2, ::3] >>> labels_small array([[0, 0, 0, 0], [0, 0, 5, 0], [0, 1, 5, 0], [0, 0, 5, 0], [0, 0, 0, 0]], dtype=uint8) >>> find_boundaries(labels_small, mode='subpixel').astype(np.uint8) array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 0, 1, 0], [0, 1, 1, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0], [0, 1, 1, 1, 0, 1, 0], [0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> bool_image = np.array([[False, False, False, False, False], ... [False, False, False, False, False], ... [False, False, True, True, True], ... [False, False, True, True, True], ... [False, False, True, True, True]], ... dtype=bool) >>> find_boundaries(bool_image) array([[False, False, False, False, False], [False, False, True, True, True], [False, True, True, True, True], [False, True, True, False, False], [False, True, True, False, False]]) """ if label_img.dtype == 'bool': label_img = label_img.astype(np.uint8) ndim = label_img.ndim footprint = ndi.generate_binary_structure(ndim, connectivity) if mode != 'subpixel': boundaries = ( dilation(label_img, footprint) != erosion(label_img, footprint) ) if mode == 'inner': foreground_image = (label_img != background) boundaries &= foreground_image elif mode == 'outer': max_label = np.iinfo(label_img.dtype).max background_image = (label_img == background) footprint = ndi.generate_binary_structure(ndim, ndim) inverted_background = np.array(label_img, copy=True) inverted_background[background_image] = max_label adjacent_objects = ( ( dilation(label_img, footprint) != erosion(inverted_background, footprint) ) & ~background_image ) boundaries &= (background_image | adjacent_objects) return boundaries else: boundaries = _find_boundaries_subpixel(label_img) return boundaries def mark_boundaries(image, label_img, color=(1, 1, 0), outline_color=None, mode='outer', background_label=0): """Return image with boundaries between labeled regions highlighted. Parameters ---------- image : (M, N[, 3]) array Grayscale or RGB image. label_img : (M, N) array of int Label array where regions are marked by different integer values. color : length-3 sequence, optional RGB color of boundaries in the output image. outline_color : length-3 sequence, optional RGB color surrounding boundaries in the output image. If None, no outline is drawn. mode : string in {'thick', 'inner', 'outer', 'subpixel'}, optional The mode for finding boundaries. background_label : int, optional Which label to consider background (this is only useful for modes ``inner`` and ``outer``). Returns ------- marked : (M, N, 3) array of float An image in which the boundaries between labels are superimposed on the original image. See Also -------- find_boundaries """ float_dtype = _supported_float_type(image.dtype) marked = img_as_float(image, force_copy=True) marked = marked.astype(float_dtype, copy=False) if marked.ndim == 2: marked = gray2rgb(marked) if mode == 'subpixel': # Here, we want to interpose an extra line of pixels between # each original line - except for the last axis which holds # the RGB information. ``ndi.zoom`` then performs the (cubic) # interpolation, filling in the values of the interposed pixels marked = ndi.zoom(marked, [2 - 1/s for s in marked.shape[:-1]] + [1], mode='mirror') boundaries = find_boundaries(label_img, mode=mode, background=background_label) if outline_color is not None: outlines = dilation(boundaries, square(3)) marked[outlines] = outline_color marked[boundaries] = color return marked