import numpy as np import pytest from numpy.testing import assert_array_equal, assert_allclose from skimage._shared.utils import _supported_float_type from skimage.segmentation import find_boundaries, mark_boundaries white = (1, 1, 1) def test_find_boundaries(): image = np.zeros((10, 10), dtype=np.uint8) image[2:7, 2:7] = 1 ref = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) result = find_boundaries(image) assert_array_equal(result, ref) def test_find_boundaries_bool(): image = np.zeros((5, 5), dtype=bool) image[2:5, 2:5] = True ref = np.array([[False, False, False, False, False], [False, False, True, True, True], [False, True, True, True, True], [False, True, True, False, False], [False, True, True, False, False]], dtype=bool) result = find_boundaries(image) assert_array_equal(result, ref) @pytest.mark.parametrize( 'dtype', [np.uint8, np.float16, np.float32, np.float64] ) def test_mark_boundaries(dtype): image = np.zeros((10, 10), dtype=dtype) label_image = np.zeros((10, 10), dtype=np.uint8) label_image[2:7, 2:7] = 1 ref = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) marked = mark_boundaries(image, label_image, color=white, mode='thick') assert marked.dtype == _supported_float_type(dtype) result = np.mean(marked, axis=-1) assert_array_equal(result, ref) ref = np.array([[0, 2, 2, 2, 2, 2, 2, 2, 0, 0], [2, 2, 1, 1, 1, 1, 1, 2, 2, 0], [2, 1, 1, 1, 1, 1, 1, 1, 2, 0], [2, 1, 1, 2, 2, 2, 1, 1, 2, 0], [2, 1, 1, 2, 0, 2, 1, 1, 2, 0], [2, 1, 1, 2, 2, 2, 1, 1, 2, 0], [2, 1, 1, 1, 1, 1, 1, 1, 2, 0], [2, 2, 1, 1, 1, 1, 1, 2, 2, 0], [0, 2, 2, 2, 2, 2, 2, 2, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) marked = mark_boundaries(image, label_image, color=white, outline_color=(2, 2, 2), mode='thick') result = np.mean(marked, axis=-1) assert_array_equal(result, ref) def test_mark_boundaries_bool(): image = np.zeros((10, 10), dtype=bool) label_image = np.zeros((10, 10), dtype=np.uint8) label_image[2:7, 2:7] = 1 ref = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) marked = mark_boundaries(image, label_image, color=white, mode='thick') result = np.mean(marked, axis=-1) assert_array_equal(result, ref) @pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64]) def test_mark_boundaries_subpixel(dtype): labels = np.array([[0, 0, 0, 0], [0, 0, 5, 0], [0, 1, 5, 0], [0, 0, 5, 0], [0, 0, 0, 0]], dtype=np.uint8) np.random.seed(0) image = np.round(np.random.rand(*labels.shape), 2) image = image.astype(dtype, copy=False) marked = mark_boundaries(image, labels, color=white, mode='subpixel') assert marked.dtype == _supported_float_type(dtype) marked_proj = np.round(np.mean(marked, axis=-1), 2) ref_result = np.array( [[ 0.55, 0.63, 0.72, 0.69, 0.6 , 0.55, 0.54], [ 0.45, 0.58, 0.72, 1. , 1. , 1. , 0.69], [ 0.42, 0.54, 0.65, 1. , 0.44, 1. , 0.89], [ 0.69, 1. , 1. , 1. , 0.69, 1. , 0.83], [ 0.96, 1. , 0.38, 1. , 0.79, 1. , 0.53], [ 0.89, 1. , 1. , 1. , 0.38, 1. , 0.16], [ 0.57, 0.78, 0.93, 1. , 0.07, 1. , 0.09], [ 0.2 , 0.52, 0.92, 1. , 1. , 1. , 0.54], [ 0.02, 0.35, 0.83, 0.9 , 0.78, 0.81, 0.87]]) assert_allclose(marked_proj, ref_result, atol=0.01) @pytest.mark.parametrize('mode', ['thick', 'inner', 'outer', 'subpixel']) def test_boundaries_constant_image(mode): """A constant-valued image has not boundaries.""" ones = np.ones((8, 8), dtype=int) b = find_boundaries(ones, mode=mode) assert np.all(b == 0)